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Abstract
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1 Introduction

A large body of empirical literature studies announcement returns in takeovers. One well-

documented fact is that target returns are robustly positive, while bidder returns exhibit

more dispersion and are negative on average (Andrade et al.(2001), Fuller et al. (2002)).

While researchers have investigated a long list of �rm- and deal-characteristics, there still

appears to be no consensus on the economic forces that drive these patterns. This is a di¢ cult

task because, quoting from Fuller et al. (2002, p.1763), �Researchers have been unable to

successfully explain much of this variation, partially because the announcement of a takeover

reveals information about numerous things.�We present a simple analytical framework to

understand the nature of the information revealed around a takeover announcement.

We follow Holmes and Schmitz (1990, 1995) and Jovanovic and Braguinsky (2004) in

modeling a competitive model of takeovers in which good projects (tradeable) and good or-

ganizations (non-tradeable) are complements. Because some �rms with a good organization

set out with a bad project, and vice versa, takeovers serve to reallocate good tradeable from

bad organizations to good organizations. Along with announcement returns for bidders and

targets, the model endogenously determines which �rms become targets and bidders, overall

takeover volume, and the relative size of bidders and targets.

We �rst show that, under general conditions, target and bidder announcement returns for

takeovers generated by the complementarity of assets identify the public knowledge about

�rms before the deal announcements. More precisely, we show that announcement returns

are negative (positive) for target �rms and positive (negative) for bidder �rms if �rms�

tradeable (non-tradeable) is public knowledge. To see why, suppose that �rms�tradeable

is public knowledge before the takeover announcement. From investors�perspective, con-

ditional on a known tradeable quality, �rms with heterogeneous non-tradeable are pooled.

Hence, announcement returns re�ect the information about bidder and target �rms�non-

tradeable. Because of the complementarity between tradeable and non-tradeable, having

the same quality of tradeable and facing the same market price for it, �rms with worse

non-tradeable should have higher incentive to be a target (a seller of tradeable). Accord-

ingly, the announcement of being a target �rm reveals a bad information about the �rm�s

non-tradeable, while that of being a bidder �rm reveals a good information. Relative to

the pre-announcement expected �rm value conditional on the known quality of tradeable,

a target market value drops and a bidder market value goes up, i.e., target discounts and

bidder premia. A symmetric reasoning explains target premia and bidder discount if �rms�

non-tradeable is public knowledge.

We also show that, if �rms�status quo value �a value that would obtain if �rms do not
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participate in takeovers �is public knowledge but tradeable and non-tradeable are not sepa-

rately observed, then announcement returns are positive for both targets and bidders, given

that the likelihood of takeovers is su¢ ciently small. When �rms�status quo value is public

information, �rms with di¤erent combinations of tradeable and non-tradeable that generate

the same status quo value are pooled. If a measure of �rms that participate in takeovers

is su¢ ciently small, then the separation from non-participating �rms drives announcement

returns. These announcement returns must be positive because �rms participate in takeovers

only if doing so increases their values relative to their status quo values.

What does this imply for the empirical observations of announcement returns? In prin-

ciple, a sample of takeover deals may include all the three cases of public knowledge about

�rms described above, and announcement returns can be positive or negative depending on

what investors know about �rms before the announcements. However, we know that nega-

tive target returns are uncommon �indicating that �rms�tradeable is not public knowledge.

Through the lens of our model, empirically documented (i) robust target premia, (ii) much

smaller bidder returns, and (iii) a large dispersion in bidder returns, jointly indicate that

it is di¢ cult to know �rms�tradeable a priori, while non-tradeable may be public for some

�rms, in which case we should expect their large value losses if they turn out to be bidders.

In terms of understanding the dispersion of bidder returns, our model suggests that

controlling for investors�prior information is critically important. At the end of Section

3, we discuss another set of evidence that supports our hypothesis � large loss deals are

concentrated among serial or frequent bidders (Moeller et al. (2005)) and their returns

decline from deal to deal (Renneboog and Vansteenkiste (2019)).1 In the literature, there

are two approaches to this phenomenon. First, Fuller et al. (2002) argue that �Since the

same bidder chooses di¤erent types of targets and methods of payment, any variation in

returns must be due to the characteristics of the target and the bid�. Second, bidder �rms

might change as they experience multiple deals over a short period of time. In particular,

they might grow overcon�dence (Billet and Qian (2008), Ja¤e et al. (2013), El-Khativ et al.

(2015)) or might be learning (Aktas et al. (2009, 2011, 2013)).

Our model o¤ers an alternative hypothesis: declining returns might be due to investors�

gradual learning about serial bidders� non-tradeable. To be clear, our message is not to

dispute that changes in bidder �rms can a¤ect announcement returns. However, our model

shows that changes in investors�information can be a signi�cant �in that it can change the

sign of announcement returns �contributing factor. When examining announcement returns

1Renneboog and Vansteenkiste (2019) state that serial bidders� underperformance is one of the most
consistent �ndings in the literature. It holds in the U.S. (Fuller et al. (2000), Klasa and Stegemoller (2007),
Billett and Qian (2008), Laamanen and Keil (2008), El-Khativ et al. (2015), Li et al. (2018)), in the U.K.
(Doukas and Petmezas (2007), Ismail and Abdallah (2013)), and in Australia (Hossain et al. (2021)).
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in takeover markets, controlling for investors�prior information about �rms is critical as it

can change their sign even without changes in �rm- or deal-characteristics.

In Section 4, we solve a parameterized model in closed form to derive other predictions.

We show that (i) takeover volume decreases in transaction costs, and (ii) a technological

change that favors non-tradeable (tradeable) increases (decreases) the size of bidders rela-

tive to their matched targets. We also show that (iii) transaction costs that distort prices

(e.g. M&A advisory fees that depend on target prices) increase the relative bidder size

if a production technology does not exhibit decreasing returns to non-tradeable, and (iv)

costs that directly reduce post-takeover �rm values (e.g. integration costs) increase the rela-

tive bidder (target) size if a production technology features higher returns to non-tradeable

(tradeable) than tradeable (non-tradeable). To our knowledge, these comparative statics

results are new to the literature. Taken together, the model predicts the following cross-

industry patterns of takeovers: takeover volume should be smaller in industries with higher

transaction costs, while the relative size of bidders should be larger in industries where non-

tradeable is more important in production than tradeable. Moreover, transaction costs and

technology interact: the positive e¤ect of transaction costs on the relative bidder size should

be more noticeable in industries with technologies that rely more on non-tradeable.

The rest of the paper is organized as follows. In Section 2, we develop a model of

takeovers. In Section 3, we derive implications for announcement returns. In Section 4,

we solve a parameterized model in closed-form to investigate other testable implications.

Section 5 concludes.

2 Model

Each �rm is endowed with a tradeable factor A, and a non-tradeable factor X. We interpret

A as tangible asset that can be traded and X as intangible asset that is di¢ cult to trade,

such as management quality and organizational capital. A tradeable factor is indivisible,

and at most one tradeable factor can be managed by each �rm. This assumption is meant

to capture the indivisible nature of takeovers.2 Finally, we assume that being a target and

a bidder simultaneously is too costly. This is also consistent with observations ��rms are

typically active on only one side of takeover markets. There is a continuum of �rms with

di¤erent A and X. We make the following assumption for the distribution of A and X.

Assumption 1 (Distribution)

2If a fraction of a �rm can be sold and the remaining part continues as a going concern, we view it as a
sale of a division of the �rm, not a takeover.
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(a) Tradeable A is distributed over [0; Amax] with a cumulative distribution function �A
and a continuous and strictly positive density �A.

(b) Non-tradeable X is distributed over [0; Xmax] with a cumulative distribution function

�X and a continuous and strictly positive density �X .

(c) A and X are independent.

Assumption 1(a,b) are technical assumptions. Assumption 1(c) implies that some
�rms have high A and low X, and vice versa.3 Takeovers reallocate high A from �rms

with low X to �rms with high X. Using (A;X) 2 [0; Amax] � [0; Xmax], �rms can produce
F (A;X), or participate in takeovers. We make the following assumption for the production

function F . We let FA and FX denote partial derivatives.

Assumption 2 (Technology)
For any (A;X) 2 [0; Amax]� [0; Xmax], F (A;X) satis�es the following properties:

(a) FA > 0, FX > 0, and FAX > 0.

(b) FA (A; 0) = 0 and FA (A;1) =1.

(c) F (0; X) = 0, F (A; 0) = 0, and F (A;1) =1.

Assumption 2(a) states that both factors are useful and they are complementary. Com-
bined with Assumption 1(c), this is the source of gains from takeovers in our model. As-
sumption 2(b) ensures the interiority of takeover choice. Assumption 2(c) ensures the
existence of marginal �rms on both sides of the market.

A �rm with (A;X) faces three options. First, it can produce with endowed (A;X), which

results in �rm value F (A;X). Second, it can sell its tradeable A at a market price P (A).

If A is private information to the �rm, it must disclose it before selling it.4 Third, it can

abandon its initial tradeable A to buy a new tradeable a 2 [0; Amax] at a market price P (a).
A market price P (A) is an equilibrium object, which �rms take as given. In this setup, a

decision problem facing a �rm with (A;X) is

max

8>>><>>>:F (A;X) ; P (A)| {z }
target

; max
a2[0;Amax]

fF (a;X)� P (a)g| {z }
bidder

9>>>=>>>; . (1)

3Independence is not a critical assumption. We only need imperfect correlation to generate takeovers.
4Without a disclosure, a pooling equilibrium may exist. However, it can be shown that with free disclosure,

target �rms �nd it optimal to disclose their A. See Kawakami (2022).
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In formulating (1), we implicitly assumed that the �rm cannot sell an endowed tradeable A

and buy a new tradeable (i.e., cannot act as both a bidder and a target). If allowed, this

would achieve the payo¤ P (A) + max
a2[0;Amax]

fF (a;X)� P (a)g. Such a buy-and-sell strategy
might be reasonable if A is a speci�c asset. Yet, in a context of takeovers, we rarely observe

a �rm simultaneously selling itself and buying another �rm. Accordingly, we infer that a cost

of doing both must be very high. We make this intuition formal in Lemma 5, and show
that if a cost of doing both is at least F (A;X), then no �rm does both.

Transaction costs. While our results on announcement returns can be derived in

a model without transaction costs, we incorporate them because they are important in

takeover markets and yield testable implications. We assume that target �rms selling their

A receive (1� �T )P (A), while bidder �rms buying A pay (1 + �B)P (A), where �T 2 [0; 1]
and �B 2 [0;1) are constants. For concreteness, we interpret (�T ; �B) as fees charged
by M&A advisers (e.g. investment banks). Bidder �rms buying A may additionally incur

integration costs cF (A;X), where c 2 [0; 1] is a constant. With these transaction costs

(�T ; �B; c), a decision problem facing a �rm with (A;X) becomes

max fF (A;X) ; �T (A;X) ; �B (A;X)g , where (2)

�T (A) � (1� �T )P (A) ,

�B (X) � max
a2[0;Amax]

f(1� c)F (a;X)� (1 + �B)P (a)g . (3)

In the following, we work with (2), which subsumes (1) as a special case �T = �B = c = 0.

2.1 Bidder �rms

We �rst study bidder �rms� action and participation decision. Given an increasing and

twice-di¤erentiabile P (A), the �rst and second order conditions for (3) are

(1� c)FA (A;X) = (1 + �B)P 0 (A) > 0, (4)

(1� c)FAA (A;X) < (1 + �B)P 00 (A) . (5)

Assumption 2(b) ensures that (4) has a unique solution for X. We denote this solution
by x (A) and call it a matching function. By the implicit function theorem applied to (4),

6



the matching function x (A) satis�es

x0 (A) =
FA (A; x (A))

FAX (A; x (A))

�
P 00 (A)

P 0 (A)
� FAA (A; x (A))
FA (A; x (A))

�
=

1

FAX (A; x (A))

�
1 + �B
1� c P

00 (A)� FAA (A; x (A))
�
> 0,

where the second equality is by (4) and the last inequality is by (5). Hence, the inverse

matching function x�1 (X) � a (X) is well de�ned and increasing. Using a (X), a value of
bidder �rms endowed with (A;X) is

�B (X) = (1� c)F (a (X) ; X)� (1 + �B)P (a (X)) . (6)

By the optimality of a (X), �0B (X) = (1� c)FX (a (X) ; X) > 0. Also, �B (X) > 0 if and
only if P (a(X))

F (a(X);X)
< 1�c

1+�B
. By using (4) to replace 1�c

1+�B
with P 0(a(X))

FA(a(X);X)
and rearranging,

�B (X) > 0 if and only if
FA(a(X);X)
F (a(X);X)

< P 0(a(X))
P (a(X))

. Lemma 1 summarizes the results so far.

Lemma 1 (Matching)
The interior solution of bidders�problem (3) characterized by (4) and (5) implies:

(a) A matching function x (A) 2 (0;1) uniquely de�ned by (4) satis�es

x0 (A) =
FA (A; x (A))

FAX (A; x (A))

�
P 00 (A)

P 0 (A)
� FAA (A; x (A))
FA (A; x (A))

�
> 0. (7)

(b) �B (X) given in (6) satis�es �0B (X) > 0. Also, �B (X) > 0 if and only if

FA (a (X) ; X)

F (a (X) ; X)
<
P 0 (a (X))

P (a (X))
. (8)

Lemma 1(a) shows that at the interior optimum of bidders�problem, the matching is

positive assortative (i.e., x0 (A) > 0). Lemma 1(b) shows that in any equilibrium with

a positive bidder payo¤ �B (X), the price elasticity must be greater than the production

elasticity with respect to a tradeable.

Participation. A participation constraint for bidder �rms is

F (A;X) � �B (X) = (1� c)F (a (X) ; X)� (1 + �B)P (a (X)) .

7



Assumption 2(c) implies that there is a unique AB (X) 2 (0; a (X)) de�ned by

F (AB (X) ; X) = (1� c)F (a (X) ; X)� (1 + �B)P (a (X)) (9)

such that F (A;X) � �B (X) if and only if A � AB (X). Firms with a non-tradeable X are

indi¤erent between F (AB (X) ; X) and �B (X). We later verify that A � AB (X) implies

another participation constraint �T (A) < �B (X). To characterize AB (X), we apply the

implicit function theorem to (9) and use (4):

A0B (X) = �
FX (AB (X) ; X)� (1� c)FX (a (X) ; X)

FA (AB (X) ; X)
.

This is positive if and only if FX (AB (X) ; X) < (1� c)FX (a (X) ; X). Using (9), an algebra
shows that A0B (X) > 0 if and only if

FX(AB(X);X)
F (AB(X);X)

FX(a(X);X)
F (a(X);X)

< 1 + (1 + �B)
P (a (X))

F (AB (X) ; X)
. (10)

Because AB (X) < a (X), (10) is satis�ed if
FX(A;X)
F (A;X)

is weakly increasing in A. These results

are summarized in Lemma 2.

Lemma 2 (Bidder �rms)

(a) F (A;X) � �B (X) if and only if A � AB (X), where AB (X) 2 (0; a (X)) is uniquely
de�ned by (9).

(b) A0B (X) > 0 if
FX(A;X)
F (A;X)

is weakly increasing in A.

The condition on F in Lemma 2(b) states that an increase inA weakly increases the elas-
ticity of F with respect to X. This is stronger than FAX > 0. A simple example that satis�es

this condition is a multiplicably separable production function F (A;X) = g (A)h (X). For

AB (X) to be increasing, however, this condition is not necessary. A necessary and su¢ cient

condition (10) allows FX(A;X)
F (A;X)

to be decreasing in A, but not too much. For our characteriza-

tion of announcement returns, what matters is that AB (X) is increasing. So, the su¢ cient

condition being not necessary is a good thing; our characterization of announcement returns

is valid for more general F , beyond the multiplicably separable case.
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2.2 Target �rms

Next, we characterize target �rms. A participation constraint for target �rms with (A;X) is

F (A;X) � �T (A) = (1� �T )P (A) .

By Assumption 2(c), there exists a unique threshold XT (A) > 0 de�ned by

F (A;XT (A)) = (1� �T )P (A) (11)

such that F (A;X) � �T (A) if and only if X � XT (A). Firms with a tradeable A are

indi¤erent between F (A;XT (A)) and �T (A). We later verify that X � XT (A) implies

another participation constraint �B (X) < �T (A). To characterize XT (A), we rewrite (9)

using X = x (A), A = a (X):

P (A) =
1� c
1 + �B

F (A; x (A))� 1

1 + �B
F (AB (x (A)) ; x (A)) .

Substituting this into (11),

F (A;XT (A)) = (1� �T )
�
1� c
1 + �B

F (A; x (A))� 1

1 + �B
F (AB (x (A)) ; x (A))

�
< F (A; x (A)) .

This implies XT (A) < x (A). By applying the implicit function theorem to (11),

X 0
T (A) = �

FA (A;XT (A))� F (A;XT (A))
P (A)

P 0 (A)

FX (A;XT (A))
.

Therefore, X 0
T (A) > 0 if and only if

FA (A;XT (A))

F (A;XT (A))
<
P 0 (A)

P (A)
. (12)

Recall from (8) that for a tradeable A to attract bidder �rms, FA(A;x(A))
F (A;x(A))

< P 0(A)
P (A)

is necessary.

Because XT (A) < x (A), if FA(A;X)
F (A;X)

is weakly increasing in X, then (8) implies (12). The

results on target �rms�participation are summarized in Lemma 3.

Lemma 3 (Target �rms)

(a) F (A;X) � �T (A) if and only if X � XT (A), where XT (A) 2 (0; x (A)) is uniquely
de�ned by (11).
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(b) X 0
T (A) > 0 if

FA(A;X)
F (A;X)

is weakly increasing in X.

Lemma 2(b) and Lemma 3(b) are the key to our analysis of announcement returns.

2.3 Participation decision

We establish that �rms with A � AB (X) choose to be bidders, not targets, and that �rms
with X � XT (A) choose to be targets, not bidders.

Lemma 4 A � AB (X) implies �T (A) < �B (X), while X � XT (A) implies

�B (X) < �T (A).

Proof. On the (X;A)-plane (taking X on the horizontal axis), XT (A) < x (A) im-

plies that the graph X = XT (A) lies left to the graph X = x (A). Similarly, AB (X) < a (X)

implies that the graph A = AB (X) lies below the graph A = a (X). Because X =

x (A) and A = a (X) are an identical and increasing function, any point on or left to the

graph X = XT (A) (i.e., X � XT (A)) lies strictly above the graph A = AB (X) (i.e.,

A > AB (X)). Therefore at any such point, �B (X) < F (A;X) � �T (A) holds. Similar

reasoning applied to any point on or below the graph A = AB (X) (i.e., A � AB (X)) implies
�T (A) < F (A;X) � �B (X). �

Proposition 1 summarizes Lemmas 1-4.

Proposition 1 (Firms�actions)
Assume @

@A

�
FX
F

�
� 0 and @

@X

�
FA
F

�
� 0. Given an increasing and twice-di¤erentiable

P (A), �rms�optimal actions imply:

(a) Bidders and targets are matched according to X = x (A) de�ned by (4), and x0 (A) > 0.

(b) Firms become targets if and only if X � XT (A), and become bidders if and only if

A � AB (X). XT (A) de�ned by (11) satis�es X 0
T (A) > 0 and 0 < XT (A) < x (A),

while AB (X) de�ned by (9) satis�es A0B (X) > 0 and 0 < AB (X) < a (X) � x�1 (X).

(c) �0T (A) > 0 and �
0
B (X) > 0. Also, �B (X) > 0 if and only if (8) holds.

Figure 1 illustrates �rms�matching and selection stated in Proposition 1(a,b).
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A

X

a

A = A (X)

x(a)

A  (x(a))

X = x(A) or A = a(X)

X = X (A)

X  (a)

B

B

T

T

Figure 1. Firms�actions.

Note. A black solid line is a matching function x (A) = X , a (X) = A. A blue dashed line

represents marginal target �rms with (A;XT (A)). A red double dashed line represents

marginal bidder �rms with (AB (X) ; X).

In the area left to the blue dashed line X = XT (A), �B (X) < F (A;X) < �T (A) holds.

Firms in this region have low organization quality X relative to their tradeable A. Their best

option is to sell their endowed A. In the area below the red double dashed line A = AB (X),

�T (A) < F (A;X) < �B (X) holds. Firms in this region have low tradeable quality A

relative to their organization X. Their best option is to buy and integrate another �rm with

a better tradeable. Finally, in the neighborhood of the black solid line (a matching function

x (A) = X), max f�T (A) ;�B (X)g < F (A;X) holds. Firms in this region �nd it optimal
not to participate in takeovers. Even if �rms with high A in this region received a bid P (A),

they would reject it because their status quo value F (A;X) is higher than �T (A).

To close this subsection, we show that if simultaneously being a target and a bidder (i.e.,

a buy-and-sell strategy) costs at least F (A;X), no �rm does this.

Lemma 5 If a buy-and-sell strategy costs F (A;X) or more, a �rm with (A;X) does

not choose this strategy.
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Proof. For target �rms with X � XT (A), an additional bene�t from being bidder

is �B (X). Therefore, if a cost of doing both � satis�es � � �B (X), no target �rm has such
an incentive. Recall that �B (X) < F (A;X) holds for these �rms. Similarly, for bidder

�rms with A � AB (X), � � �T (A) prevents them from doing both, and �T (A) < F (A;X)
holds for these �rms. For non-participating �rms, � � �T (A)+�B (X)�F (A;X) prevents
them from doing both. Because max f�T (A) ;�B (X)g < F (A;X) holds for these �rms,

�T (A)+�B (X)�F (A;X) = min f�T (A) ;�B (X)g+max f�T (A) ;�B (X)g�F (A;X) <
min f�T (A) ;�B (X)g < F (A;X). Therefore, a su¢ cient (but not necessary) condition to
deter a buy-and-sell strategy for any �rm is � � F (A;X). �

In equilibrium, min f�T (A) ;�B (X)g < F (A;X) holds for any �rm. For target and

bidder �rms, the incremental bene�t from switching to a buy-and-sell strategy (from their

current value max f�T (A) ;�B (X)g) is smaller than F (A;X). For non-participating �rms,
a buy-and-sell strategy means combining their second and third best options (after their

current value F (A;X)). Its net bene�t (net of F (A;X), as �rms cannot �keep it and sell

it�) is smaller than the payo¤ of their third best option min f�T (A) ;�B (X)g.5

2.4 Market-clearing prices, volume, and relative size

So far we assumed the existence of increasing and twice-di¤erentiable P (A), and it was

left implicit in x (A), XT (A), and AB (X). We close the model by writing down demand

and supply as a function of P (A). First, consider supply. There is a measure �A (A) of

�rms endowed with a tradeable A. Among them, those with a non-tradeable X � XT (A)

become targets. Hence, a measure of target �rms with a tradeable A is �A (A) �X (XT (A)).

By integrating this supply density over an interval [a;Amax], we obtain the corresponding

supply
R Amax
a

�A (A) �X (XT (A)) dA.

Next, consider �rms endowed with a non-tradeable X. There is a measure �X (X) of

such �rms, and among them those with a tradeable A � AB (X) become bidders. There-

fore, a demand for a tradable a (X) from bidder �rms endowed with a non-tradeable X

is �X (X) �A (AB (X)). Because a tradeable A is matched with a non-tradeable x (A) and

x0 (A) > 0 by Lemma 1, the relevant demand to be equated with supply
R Amax
a

�A (A) �X (XT (A)) dA

is
R x(Amax)
x(a)

�X (X) �A (AB (X)) dX. A market-clearing condition is then:Z Amax

a

�A (A) �X (XT (A)) dA =

Z x(Amax)

x(a)

�X (X) �A (AB (X)) dX 8a 2 [0; Amax] .

5The proof of Lemma 5 shows that a smaller cost � = min f�T (A) ;�B (X)g is su¢ cient to deter a
buy-and-sell strategy. For high transaction costs �T ; �B ; c, min f�T (A) ;�B (X)g becomes small, so it is
unlikely to observe a �rm active on both sides of frictional takeover markets.
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Taking a derivative with respect to a yields

�A (A) �X (XT (A)) = �X (x (A)) �A (AB (x (A)))x
0 (A) 8A 2 [0; Amax] . (13)

Finally, we impose a boundary condition x (Amax) = Xmax. In the market-clearing condition

(13), AB (X) de�ned by (9) and XT (A) de�ned by (11) depend on P (A), while x (A) de�ned

by (4) depends on P 0 (A). Therefore, (13) de�nes a second-order di¤erential equation in

P (A). We also de�ne a total volume of takeovers by

V �
Z Amax

0

�A (A) �X (XT (A)) dA. (14)

Because V is an equilibrium measure of target �rms, the maximum value of V is 1
2
. We

de�ne the relative bidder size by

RB (A) � �B (x (A))

�T (A)
. (15)

In Section 4 we solve (13) and characterize (14) and (15) for a parameterized model.

3 Announcement returns

To de�ne announcement returns by changes in the post-announcement �rm value relative to

the pre-announcement �rm value, we assume the following time line of events:

Stage 1. A continuum of �rms forms. Based on its characteristics I which is public knowledge,

a �rm�s market value is q (I).

Stage 2. The �rm may enter the takeover market as a bidder or a target. It can stay out of the

takeover market.

Stage 3. The takeover market clears at the prices P (A) for A 2 [0; Amax]. A bidder�s market
value is �B (X), while a target�s �rm value is �T (A).

At Stage 2, �rms know their own (A;X) and act as we analyzed in the previous section.

At Stage 3, the takeover market clears and target �rms�A and bidder �rms�X become

public. Using Stage-1 price q (I) and Stage-3 price (�B (X) ;�T (A)), announcement returns

are �T (A)�q(I)
q(I)

for targets that satisfy X � XT (A), and
�B(X)�q(I)

q(I)
for bidders that satisfy

X � XT (A), where I is public knowledge about the �rm at Stage 1.
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Clearly, the behavior of announcement returns crucially depends on I. For example, if

I = (A;X), i.e., both factors are public knowledge at Stage 1, then

q (A;X) =

8><>:
�T (A) for �rms with X � XT (A) ,

�B (X) for �rms with A � AB (X) ,
F (A;X) for other �rms

implies zero announcement returns for all targets and bidders. Thus, non-zero announcement

returns require some information revelation about (A;X). We study the following three cases

for I:

Case A. I = A. Only a tradeable factor A = a is public knowledge at Stage 1.

Case X. I = X. Only a non-tradeable factor X = x is public knowledge at Stage 1.

Case F. I = F (A;X). Only a status-quo �rm value F (A;X) = f 2 R+ is public knowledge
(neither A nor X is public knowledge) at Stage 1.

In Case A, suppose that investors observe a �rm�s tradeable is A = a 2 (0; AB (Xmax))

at Stage 1.6 They rationally anticipate that the �rm becomes a target if X � XT (a) and it

becomes a bidder if X 2
�
A�1B (a) ; Xmax

�
. At Stage 1, investors value this �rm according to

q (a) =

 Z XT (a)

0

�X (X) dX

!
�T (a)+

Z A�1B (a)

XT (a)

F (a;X)�X (X) dX+

 Z Xmax

A�1B (a)

�X (X) dX

! b�B (a) ,
where b�B (a) � RXmax

A�1
B

(a)
�B(X)�X(X)dXRXmax

A�1
B

(a)
�X(X)dX

is the average bidder value conditional on A = a. With

this Stage-1 price q (a), the target announcement return is �T (a)�q(a)
q(a)

� RT (a), while the

average bidder announcement return is
b�B(a)�q(a)

q(a)
� RB (a).

InCase X, suppose that investors observe a �rm�s non-tradeable isX = x 2 (0; XT (Amax))
at Stage 1.7 They rationally anticipate that the �rm becomes a bidder if A � AB (x), while
it becomes a target if A 2

�
X�1
T (x) ; Amax

�
. Investors value this �rm according to

q (x) =

 Z AB(x)

0

�A (A) dA

!
�B (x)+

Z X�1
T (x)

AB(x)

F (A; x)�A (A) dA+

 Z Amax

X�1
T (x)

�A (A) dA

! b�T (x) ,
6A �rm with A = a > AB (Xmax) will never be a bidder. With the observation A = a 2 (0; AB (Xmax)),

investors do not know whether this �rm will be a target or a bidder.
7A �rm with X = x > XT (Amax) will not be a target.
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where b�T (x) � RAmax
X�1
T

(x)
�T (A)�A(A)dARAmax

X�1
T

(x)
�A(A)dA

is the average target value conditional on X = x. With

this Stage-1 price q (x), the bidder announcement return is �B(x)�q(x)
q(x)

� RB (x), while the

average target announcement return is
b�T (x)�q(x)

q(x)
� RT (x).

InCase F, suppose that investors observe a �rm�s status quo value F (A;X) = f 2
�
0; f
�

at Stage 1, where f � min
�
fA; fX

	
, fA � F (Amax; XT (Amax)), and fX � F (AB (Xmax) ; Xmax).8

The average target and bidder values conditional on F (A;X) = f are given by9

b�T (f) � E [�T (A) jX � XT (A) ; F (A;X) = f ] ,b�B (f) � E [�B (X) jA � AB (X) ; F (A;X) = f ] .

The Stage-1 price q (f) is the weighted average of
n
f; b�T (f) ; b�B (f)o. The average bidder

return is
b�B(f)�q(f)

q(f)
� RB (f), while the average target announcement return is

b�T (f)�q(f)
q(f)

�
RT (f). Figure 2 illustrates what takeover announcements reveal for each case.

A

X

a

Targets
with A = a

Bidders
with A = a

X (A)T

A (X)B

A

X
x

Targets
with X = x

Bidders
with X = x

X (A)T

A (X)B

A

X

Bidders with
F(A,X) = f

X (A)T

A (X)B

Targets
with

F(A,X) = f

(a) Case A. (b) Case X. (c) Case F.
Figure 2. Information revealed relative to pre-announcement information.

Note. In each panel, a dotted line represents investors� information set at Stage 1. In Case A,

investors know A = a < AB (Xmax). In Case X, investors know X = x < XT (Amax). In

Case F, investors know F (A;X) = f < f .

Proposition 2 (Announcement returns)

8Firms with F (A;X) > max
�
fA; fX

	
will not participate in takeovers. For �rms with F (A;X) 2�

f;max
�
fA; fX

	�
, investors know which side of the market �rms will participate (if they ever do).

9Formally, b�T (f) and b�B (f) are de�ned by a line integral on a curve F (A;X) = f .
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(a) In Case A, RT (A) < 0 < RB (A) holds for any A 2 (0; AB (Xmax)).

(b) In Case X, RB (X) < 0 < RT (X) holds for any X 2 (0; XT (Amax)).

(c) In Case F, when the number of takeovers is su¢ ciently small, 0 < min fRT (f) ; RB (f)g
holds for any f 2

�
0; f
�
.

Proof. In Case A, conditional on A = a 2 (0; AB (Xmax)), investors rationally an-

ticipate that �rms choose actions according to their unobserved X: �T (a) � F (a;X) �
�B (a). Both F (a;X) (non-participating �rm value) and �B (X) (bidder �rm value) are

strictly increasing in X. Because rational investors form q (a) as the weighted average

of f�T (a) ; F (a;X) ;�B (X)g, �T (a) is always smaller than q (a), while b�B (a) is always
greater than q (a). A symmetric reasoning in Case X shows that conditional on X = x 2
(0; XT (Amax)), �B (x) is smaller than q (x), while b�T (x) is greater than q (x). In Case F,
a �rm with F (A;X) = f 2

�
0; f
�
can be a target or a bidder or a non-participant. Because

FAX > 0, conditional on F (A;X) = f , investors know that if the �rm has a high A it should

have low X and vice versa. Note that f < min
nb�T (f) ; b�B (f)o holds, because f � �T (A)

for targets and f � �B (X) for bidders on the locus fF (A;X) = fg. Because q (f) is the
weighted average of

n
f; b�T (f) ; b�B (f)o, for a su¢ ciently large weight on f (i.e., when the

number of takeovers is su¢ ciently small), f < q (f) < min
nb�T (f) ; b�B (f)o holds. �

Proposition 2 shows that when only a tradeable A is public knowledge at Stage 1,

target discounts and bidder premia occur, while the opposite pattern arises when only a non-

tradeableX is public knowledge at Stage 1. This result generalizes Jovanovic and Braguinsky

(2004), which assumed Case X to rationalize target premia and bidder discounts.

The key takeaway of Proposition 2 is that investors�information set at Stage 1 deter-
mines which �rms are pooled, which in turn determines information revealed at Stage 3. In

Case A (see Figure 2(a)), investors observe A = a at Stage 1 and �rms with heterogeneous
X are pooled. Therefore, takeover announcements reveal high X for bidder �rms and low

X for target �rms, generating RT (a) < 0 < RB (a) (bidder premia and target discounts). A

symmetric reasoning in Case X (Figure 2(b)) implies that takeover announcements reveal
high A for target �rms and low A for bidder �rms, generating RB (x) < 0 < RT (x) (target

premia and bidder discounts). In Case F (Figure 2(c)), investors observe the status quo
value F (A;X) = f at stage 1 and �rms with di¤erent (A;X) are pooled. Therefore, takeover

announcements reveal higher X for bidder �rms and higher A for target �rms relative to

other �rms with the same status quo value f . If the likelihood of takeovers is su¢ ciently
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small, this generates 0 < min fRT (f) ; RB (f)g (target and bidder premia).10

Discussion. A large body of empirical literature found that target returns are ro-

bustly positive while bidder returns exhibit more dispersion and are negative on average

(Andrade et al.(2001), Fuller et al. (2002)). While researchers examined a long list of vari-

ables to control for �rm- and deal-characteristics, not much e¤ort has been done to control

for the public knowledge about �rms before announcements. Our model shows that it can be

a key driver of announcement returns. A given takeover sample may include all the three

cases we considered, Cases A, X, F. Then, the fact that target �rms�market value almost
always increases upon the announcement of takeovers indicates that deals to which Case A

applies must be rare, i.e., �rms�tradeable factors are typically not public knowledge. This is

consistent with the idea that a project development is subject to a high level of uncertainty

(consider R&D), and a �rm has an incentive to keep its outcome secret. If a takeover sample

mostly consists of deals to which Case X or Case F applies, then bidder returns can be
positive or negative, while target returns are always positive. Thus, through the lens of our

model, (i) robust target premia, (ii) much smaller bidder returns, and (iii) a large dispersion

in bidder returns, can be jointly explained by the nature of public knowledge about �rms �

investors do not know �rms�A.

While Case F (a status quo �rm value is public knowledge) seems natural, one may

wonder what Case X means empirically. Another well known empirical fact may shed light

on this: �rms that conduct many takeovers �serial bidders �are common.11 Importantly,

the large loss deals are concentrated among serial bidders (Moeller et al. (2005)), and their

announcement returns decline from deal to deal (Renneboog and Vansteenkiste (2019)).

In the empirical literature, the serial bidders� underperformance is usually attributed to

fundamental changes in bidder �rms. The literature mostly focused on CEO overcon�dence

(Billet and Qian (2008), Ja¤e et al. (2013), El-Khativ et al. (2015)) or CEO learning (Aktas

et al. (2009, 2011, 2013)) as a driving force of serial bidders�persistent underperformance.

Our model o¤ers an alternative hypothesis: investors may be learning about serial bid-

ders�non-tradeable. Bidder �rms�skill with which they successfully complete takeovers and

implement subsequent integration is likely to be non-tradeable. For its �rst takeover, a

�rm�s non-tradeable �an organizational skill to manage projects �may be uncertain from

investors�point of view. However, if the �rm successfully implements multiple takeovers in a

10For a given f 2
�
0; f
�
, if a measure of non-participating �rms approaches zero (i.e., the likelihood

of takeover approaches one), Stage-1 price q (f) approaches the weighted average of b�T (f) and b�B (f).
In this case, b�T (f) > (<)b�B (f) implies target premia (discounts) and bidder discounts (premia). Ifb�T (f) = b�B (f), then announcement returns are positive for targets and bidders for any positive likelihood
of takeovers. However, this symmetry holds only under a special circumstance.
11Netter et al. (2011) report that U.S. public bidders made 8 takeovers on average from 1992 to 2009.
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short period of time, investors can learn about this skill. Therefore, we view a sample with

serial bidders as a good example of Case X. Also, the fact that bidder returns decline from
deal to deal is consistent with investors�gradual learning about the �rm�s non-tradeable.

El-Khativ et al. (2015) o¤ers a further supporting evidence for our hypothesis. They

examined a network position of CEOs, and �nd that high-centrality CEOs carry greater value

losses. They also �nd that internal governance mechanisms are unrelated to the magnitude of

value losses. These �ndings are consistent with our hypothesis: high-centrality CEOs�non-

tradeable skill is more likely to be public knowledge, and negative announcement returns

are driven by investors�disappointment about their currently managed projects. When the

negative returns are not driven by CEOs�self-interest but by investors�learning, governance

mechanisms intended to correct agency frictions should not matter much.

To close our discussion, we want to stress that our message is not to dispute the im-

portance of CEOs�overcon�dence and learning, or more generally, fundamental changes in

bidder �rms as determinants of announcement returns. However, our model shows that dif-

ferences in investors�prior information about �rms can be a signi�cant �in that they can �ip

a sign of announcement returns �contributing factor. To interpret observed announcement

returns in takeover markets, controlling for public knowledge about �rms is critical as it can

change their sign even if �rm- or deal-characteristics are identical.12

4 Other Testable Implications

The model admits a closed form solution when �A (A) = A
Amax

, �X (X) = X
Xmax

, and

F (A;X) = A�X�. We use this parameterized model to generate testable implications.

All the proofs for this section are gathered in the Appendix. First, the market-clearing

condition (13) becomes

XT (A) = AB (x (A))x
0 (A) . (16)

Using �f (A) �
f 0(A)
f(A)

A to denote the elasticity of a function f (A), x0 (A) given in (7) is

x0 (A) =
FA (A; x (A))

FAX (A; x (A))A

�
�P 0 (A)�

FAA (A; x (A))

FA (A; x (A))
A

�
.

12The following analogy may be useful. Observing a night sky, we say that stars are moving. Pointing out
that the earth is moving does not invalidate that stars are moving. However, we need to take into account
the movement of the earth to correctly interpret our observations of stars.
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Using F (A;X) = A�X� to evaluate this expression,

x0 (A) =
1

�

x (A)

A
(�P 0 (A) + 1� �) . (17)

With F (A;X) = A�X�, (4), (9), (11) can be explicitly solved:

x (A) =

�
1 + �B
1� c

P 0 (A)

�A��1

� 1
�

, (18)

AB (x (A)) =

(
(1� c)A� � (1 + �B)

P (A)

(x (A))�

) 1
�

, (19)

XT (A) =

�
(1� �T )

P (A)

A�

� 1
�

. (20)

Substituting (17)-(20) into (16), using �P (A) �
P 0(A)A
P (A)

and simplifying,

1� �T
1 + �B

��� =

�
�P (A)

1� c

�1� �
�

(�P (A)� �)
�
� (�P 0 (A) + 1� �)

� . (21)

We make a conjecture P (A) = c1Ac0 to �nd a solution to (21), which also satis�es (8) (i.e.,

to �nd an equilibrium with takeovers). Proposition 3 describes this equilibrium.

Proposition 3 (Closed form solution)
Suppose �A (A) = A

Amax
, �X (X) = X

Xmax
, and F (A;X) = A�X�.

(a) An equilibrium with

P (A) =
1� c
1 + �B

X�
max

Ac0��max

�

c0
Ac0,

x (A) = Xmax

�
A

Amax

� c0��
�

, a (X) = Amax

�
X

Xmax

� �
c0��

,

XT (A) =

�
1� �T
1 + �B

(1� c) �
c0

� 1
�

x (A) and AB (X) =
�
(1� c)

�
1� �

c0

�� 1
�

a (X)

exists, where c0 2 (�;1) is a unique solution to

c0
�
= 1 +

�
�

�

� �
1+�

(�
1� �T
1 + �B

��
�
�

1

1� c
c0
�

�1��
�

) 1
1+�

. (22)
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(b) Takeover volume is V =
�
1��T
1+�B

1�c
c0
�

� 1
� 1

1+
c0��
�

=
n
(1� c)

�
1� �

c0

�o 1
�

c0��
�

c0��
�

+1
.

(c) Relative bidder size is �B(x(A))
�T (A)

= 1+�B
1��T

�
c0
�
� 1
�
.

Propositions 4 and 5 gather comparative statics of volume and the relative bidder size.

Proposition 4 (Volume)

(a) V decreases in �T ; �B; c.

(b) lim
�!0
V = 0 and lim

�!0
V = 0.

(c) lim
�!1

V = (1�c)
1
�

1+(1�c)
1
�
and lim

�!1
V =

�
1��T
1+�B

(1�c)
� 1
�

1+
�
1��T
1+�B

(1�c)
� 1
�
.

Proposition 4(a) shows that transactions costs, whether it is fees �T ; �B or integration
costs c, decrease the volume of takeovers. Proposition 4(b) is also intuitive. Given the
complementarity in production technology, if either one of the two factors loses its productiv-

ity, takeovers disappear.13 These results are not so surprising. Proposition 4(c) is slightly
more subtle. First, a technological improvement in non-tradeable alone (i.e., � !1) elimi-
nates the negative e¤ect of fees �T ; �B. However, when (1� c)

1
� is small, a takeover volume

is small no matter how large � is. In contrast, a technological improvement in tradeable

alone (i.e., � ! 1) does not eliminate the negative e¤ect of �T ; �B; c. Intuitively, frictions
associated with matching (i.e., a distorted choice of tradeable due to fees) disappear as the

productivity of the complementary non-tradeable goes up, while frictions associated with

integration (i.e., loss of values after matching) do not.

Proposition 5 (Relative bidder size)

(a) RB (A) � �B(x(A))
�T (A)

is increasing in �T ; �B if � � �
1+�
, while it is increasing (decreasing)

in c if and only if � > (<)�.

(b) RB (A) is increasing in � and decreasing in �.

(c) lim
�!0
RB (A) = lim

�!1
RB (A) = 0, while lim

�!1
RB (A) = lim

�!0
RB (A) =1.

13Letting eX � X� , eA � A� and eF � eA; eX� = eA eX, this result can be reinterpreted as changes in the
distributions of factors.
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Proposition 5 relates the market value of the bidder relative to its matched target �rm to
transaction cost parameters (�T ; �B; c) and technology parameters (�; �). To our knowledge,

these are the new results in the literature. Proposition 5(b) shows that the relative size of
bidders increases in (�T ; �B) given that � is not too small relative to �.14 To understand why,

�rst notice that �T directly decreases target size because �T (A) = (1� �T )P (A). Second,
recall the �rst order condition of bidders�problem (4) is

(1� c)�A��1X� = (1 + �B)P
0 (A) .

This means that for a given A, x (A) must be higher for higher �B, implying a larger

�B (x (A)). Intuitively, the matching distortion demands better bidders for a given tar-

get. In contrast, the e¤ect of c depends on the relative importance of (�; �). Similar to the

e¤ect of �B, a higher c demands better bidders for a given A. In addition, a higher c directly

reduces the post-takeover value �B (X). For a large �, the former e¤ect dominates, because

an increase in � ampli�es the matching distortion due to c.15

Finally, Proposition 5(c) shows that the relative size of bidders increases in � and
decreases in �. This is intuitive because a higher � (�) means the higher productivity

of non-tradeable (tradeable), which favors bidders (targets) more as they are rich in non-

tradeable (tradeable).

For the sake of completeness, we present double limits result.

Proposition 6 (Double limits)
For a �xed �

�
= k > 0, consider taking limits �; � !1 or �; � ! 0.

(a) V approaches 1
2
as �; � !1, while it approaches 0 as �; � ! 0.

(b) RB (A) approaches 1+�B
1��T k as �; � !1, while it approaches 1+�B

1��T (� (k)� 1) as �; � !

0, where � (k) is an increasing function de�ned by � = 1 +
�
1��T
1+�B

� 1
k � 1

1�c�
�1� 1

k and

satis�es 1+�B
1��T (� (k)� 1) ? 1, k ? 1.

Proposition 6(a) shows that a level of technology matters for the takeover volume: as
both factors become more and more productive (i.e., �; � ! 1), all �rms participate in
takeovers, and vice versa. Proposition 6(b) shows that in such limits, the relative size of
bidders still depends on �

�
in a way characterized by Proposition 5(c).

14Note that � can be smaller than �. The condition � � �
1+� is equivalent to � �

�
1�� for � < 1, or � � 1.

Therefore, � � 1 is su¢ cient (i.e., no decreasing returns in non-tradeable X). When � < 1, an upper bound
on �, �

1�� 2 (0;1), increases in � and takes one for � =
1
2 .

15For a small �, the matching does not respond much to changes in c, and the latter e¤ect dominates.
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Discussion. To relate the above results to data, we need to take a stand on empirical

contents of X. Our preferred interpretation is that X is an organization capital. Li et al.

(2018) estimates �rms�organization capital and �nd that bidders own more of it and also

that it is relevant for takeover performances. They also �nd that target �rms�organization

capital is irrelevant for takeover performances. These �ndings are consistent with our model.

Given this interpretation, Propositions 4 and 5 o¤er cross-industry predictions. Other
things equal, our model predicts that the takeover volume should be larger in industries

where transaction costs of takeovers are smaller and organization capital is more important

in production. The model also predicts that a relative size of bidders should be larger in

industries where organization capital is relatively more important. Finally, the e¤ect of

integration costs on the relative bidder size should be positive (negative) in industries where

organization capital plays a major (minor) role in production.

5 Conclusion

We presented a competitive model of takeovers in which projects (tradeable) and organiza-

tions (non-tradeable) are complements. We showed that the signs of bidder and target an-

nouncement returns identify the pre-announcement public knowledge about �rms. Because

the signs of announcement returns change depending on what aspect of �rms is publicly

known before the announcement, it is critically important to control investors�information

to make a correct inference from announcement returns. We also showed that the takeover

volume and the relative bidder size can provide useful information about production technolo-

gies that combine tradeable and non-tradeable. While there are some suggestive evidences

supporting our model, more empirical work is needed to con�rm its validity.
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6 Appendix: Proofs for Section 4

Proof of Proposition 3
(a) With F (A;X) = A�X� and the conjectured price P (A) = c1Ac0, the condition (8)

becomes � < c0. Substituting P 0 (A) = c1c0Ac0�1 into (18) yields x (A) =
�
1+�B
1�c

c1c0
�

� 1
� A

c0��
� .

The boundary condition x (Amax) = Xmax pins down c1 so that P (A) = 1�c
1+�B

X�
max

A
c0��
max

�
c0
Ac0 and

x (A) = Xmax

�
A

Amax

� c0��
�

. Finally, substituting (�P (A) ; �P 0 (A)) = (c0; c0 � 1) into (21)
yields

1� �T
1 + �B

��� =

�
c0
1� c

�1� �
�

(c0 � �)
1+�
�
� . (23)

Solving this for c0 � � and rewriting it as an equation in c0
�
, (22) is obtained.

For � = �, (22) is c0
�
= 1 +

�
1��T
1+�B

� 1
1+�

> 1. For � < �, the right hand side of (22) is
decreasing in c0

�
and approaches one as c0

�
!1. For � > �, the right hand side is increasing

and concave in c0
�
. Therefore, (22) has a unique solution c0

�
2 (1;1). Finally, x (A), XT (A),

AB (X) are obtained by computing (18)-(20) with P (A) = 1�c
1+�B

X�
max

A
c0��
max

�
c0
Ac0.

(b) To derive the volume V �
R Amax
0

�A (A) �X (XT (A)) dA =
1

AmaxXmax

R Amax
0

XT (A) dA,

substitute P (A) = 1�c
1+�B

X�
max

A
c0��
max

�
c0
Ac0 into XT (A) =

n
(1� �T ) P (A)A�

o 1
�

:

V =
1

AmaxXmax

Z Amax

0

�
1� �T
1 + �B

(1� c) X
�
max

Ac0��max

�

c0

� 1
�

A
c0��
� dA

=

�
1� �T
1 + �B

1� c
c0
�

� 1
� 1

A
1+

c0��
�

max

Z Amax

0

A
c0��
� dA

=

�
1� �T
1 + �B

1� c
c0
�

� 1
� 1

1 + c0��
�

.

To obtain the second expression, using (22),
�
1��T
1+�B

1�c
c0
�

� 1
�

= �
�

( c0� �1)
1+�
�

( 1
1�c

c0
� )

1
�
. Substituting this,

V =
�

�

�
c0
�
� 1
� 1+�

��
1
1�c

c0
�

� 1
�

�
�

�
�
+ c0

�
� 1

=

�
(1� c)

�
1� �

c0

�� 1
� c0

�
� 1

c0
�
� 1 + �

�

=

�
(1� c)

�
1� �

c0

�� 1
�

c0��
�

c0��
�
+ 1

.
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(c) To derive RB (A) � �B(x(A))
�T (A)

, compute

�T (A) = (1� �T )P (A) =
(1� �T ) (1� c)

1 + �B

X�
max

Ac0��max

�

c0
Ac0 ,

�B (x (A)) = (1� c)A� (x (A))� � (1 + �B)P (A)

= (1� c)A�X�
max

�
A

Amax

�c0��
� (1� c) X

�
max

Ac0��max

�

c0
Ac0

= (1� c) X
�
max

Ac0��max

�
1� �

c0

�
Ac0.

Therefore,

RB (A) =
1 + �B
1� �T

1� �
c0

�
c0

=
1 + �B
1� �T

�c0
�
� 1
�
. �

To prove some of the comparative statics results presented below, we use an alternative
expression of (22). First, (23) can be written as

1� �T
1 + �B

�� =

�
1

1� c
c0
�

�1� �
� �c0

�
� 1
� �
�

(c0 � �)� .

We multiply c0��
c0
�
�1

1
�
to the right hand side to get

1� �T
1 + �B

�� =
1

�

�
1

1� c

c0
�

c0
�
� 1

�1� �
�

(c0 � �)�+1 .

Then solving for c0 � � and rewriting as an equation in c0
�
,

c0
�
= 1 +

�
�

�

� �
1+�

(
1� �T
1 + �B

�
1

1� c

c0
�

c0
�
� 1

� �
�
�1
) 1

1+�

. (24)

Lemma 6 (Comparative statics of c0
�
)

(a) c0
�
increases in � and decreases in �; �T ; �B.

(b) c0
�
increases (decreases) in c if and only if � > (<)�.

(c) lim
�!1

c0
�
= lim

�!0
c0
�
=1 and lim

�!0
c0
�
= lim

�!1
c0
�
= 1.

(d) For a �xed �
�
= k > 0, c0

�
approaches 1 + k as �; � !1.

(e) For a �xed �
�
= k > 0, c0

�
approaches � (k) as �; � ! 0, where � (k) > 1 is a unique

solution to � = 1 +
�
1��T
1+�B

� 1
k � 1

1�c�
�1� 1

k that increases in k without a bound.
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Proof.
(a) The right hand side of (22) as a function of c0

�
is either increasing and concave (for

� < �) or constant (for � = �) or decreasing (for � > �) in c0
�
. Therefore, when changes in

parameters increase (decrease) the right hand side, c0
�
as a unique solution to (22) increases

(decreases). Because the right hand side of (22) increases in � while decreases in �T ; �B, the
results for �; �T ; �B follow.
For �, consider (24). The right hand side of (24) is either increasing and concave (for

� > �) or constant (for � = �) or decreasing (for � < �) in c0
�
. Also, for a �xed value of c0

�
,

the right hand side decreases in �. This implies that c0
�
is decreasing in �.

(b) The right hand side of (22) is increasing (decreasing) in c if and only if � > (<)�.
(c)
For lim

�!1
c0
�
, note that the right hand side of (22) (as a function of c0

�
) shifts up without

a bound.
For lim

�!0
c0
�
, note that the right hand side of (22) (as a function of c0

�
) becomes 1.

For lim
�!1

c0
�
, note that the right hand side of (22) (as a function of c0

�
) becomes 1.

For lim
�!0

c0
�
, note that the right hand side of (22) (as a function of c0

�
) approaches an

increasing linear function with a slope no smaller than 1.
(d,e) By �xing �

�
= k in (22),

c0
�
= 1 + k

�
1+�

(�
1� �T
1 + �B

�k �
1

1� c
c0
�

�1�k) 1
1+�

.

Taking the limits �!1 or �! 0 yields the results. �

Proof of Proposition 4
(a) Comparative statics with respect to (�B; �T ) directly follow from Lemma 6(a) and

the expression of V .

Consider c. For � = �, (22) becomes c0
�
= 1 +

�
1��T
1+�B

� 1
1+�
. Hence V is obviously

decreasing in c. For � < �, c0
�
decreases in c (Lemma 6(b)) which implies that

c0
�
�1

c0
�
�1+ �

�

decreases in c. Therefore, it is su¢ cient to show that (1� c)
�
1� �

c0

�
=

c0
�
�1

1
1�c

c0
�

decreases in

c. The numerator c0
�
�1 decreases in c. Notice that the right hand side of (22) is a decreasing

function of 1
1�c

c0
�
for � < �. Because the right hand side of (22) for � < � must decrease in

response to an increase in c, 1
1�c

c0
�
must increase.

For � > �, c0
�
increases in c. We use (24) to evaluate (1� c)

�
1� �

c0

�
=

c0
�
�1

1
1�c

c0
�

in the

expression of V . Because the right hand side of (24) contains
� c0

�
�1

1
1�c

c0
�

�1� �
�

, solving (24) for
c0
�
�1

1
1�c

c0
�

yields
c0
�
�1

1
1�c

c0
�

= C
�
c0
�
� 1
��(1+�)

��� , where C is a collection of parameters independent of

c. This implies that

V = C
1
�

�
c0
�
� 1
� 1+�
���+1

c0
�
� 1 + �

�

= C
1
�

�
c0
�
� 1
� 1+�
���

c0
�
� 1 + �

�

.
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Because 1+�
��� < 0, the numerator is decreasing in c.

(b)To show lim
�!0
V = 0, �rst note that lim

�!0
c0
�
= 1 (Lemma 6(c)) implies lim

�!0

n
(1� c)

�
1� �

c0

�o 1
�

=

0. Because
c0��
�

c0��
�

+1
is bounded above by 1, the result follows.

To show lim
�!0

V = 0, we use V =
�
1��T
1+�B

1�c
c0
�

� 1
� 1

1+
c0��
�

(see the derivation of V above).

Because lim
�!0

c0
�
=1 (Lemma 6(c)) and 1

1+
c0��
�

is bounded above by 1, the result follows.

(c) For lim
�!1

V , we use V =
n
(1� c)

�
1� �

c0

�o 1
�

c0��
�

c0��
�

+1
. Because lim

�!1
�
c0
= 0 (Lemma

6(c)), showing that lim
�!1

c0��
�
=
�
1
1�c
� 1
� proves the result. By multiplying �

�
to both sides of

(22) and subtracting �
�
,

c0 � �
�

=

(
�

�

�
1� �T
1 + �B

��
�
�

1

1� c
c0
�

�1��
�

) 1
1+�

=

(�
1� �T
1 + �B

�

�

��
�
�

1

1� c
c0
�

�1��
�

) 1
1+�

=

(�
1� �T
1 + �B

�

�

��
�
�

1

1� c

�
c0 � �
�

+
�

�

��1��
�

) 1
1+�

.

As an equation in c0��
�
, this has a unique solution c0��

�
greater than �

�
for any � � �. Taking

the limit � !1,

lim
�!1

c0 � �
�

=

�
1

1� c lim�!1
c0 � �
�

� 1
1+�

, lim
�!1

c0 � �
�

=

�
1

1� c

� 1
�

.

For lim
�!1

V , we use V =
�
1��T
1+�B

1�c
c0
�

� 1
� 1

1+
c0��
�

. We �rst show that lim
�!1

c0��
�
=
�
1��T
1+�B

(1� c)
� 1
�

.
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By multiplying �
�
to both sides of (24) and subtracting �

�
,

c0 � �
�

=

(
�

�

1� �T
1 + �B

�
1

1� c

c0
�

c0
�
� 1

� �
�
�1
) 1

1+�

=

8<:�� 1� �T1 + �B
(1� c)

�
1

1� c

� �
�

 
c0��
�
+ �

�
c0��
�

! �
�
�1
9=;

1
1+�

=

8<:1� �T1 + �B
(1� c)

�
1

1� c
�

�

� �
�

 
c0��
�

�
�

c0��
�
+ �

�

!1� �
�

9=;
1

1+�

=

8<:1� �T1 + �B
(1� c)

�
1

1� c
�

�

� �
�

 
1

�
�
+ �

c0��

!1� �
�

9=;
1

1+�

.

As an equation in c0��
�
, this has a unique positive solution for any � > �. Taking the limit

�!1,

lim
�!1

c0 � �
�

=

�
1� �T
1 + �B

(1� c) lim
�!1

c0 � �
�

� 1
1+�

, lim
�!1

c0 � �
�

=

�
1� �T
1 + �B

(1� c)
� 1

�

.

Therefore, showing lim
�!1

n
(1� c)

�
1� �

c0

�o 1
�

= 1 completes the proof. Using lim
�!1

c0
�
= 1

(Lemma 6(c)),

lim
�!1

�
(1� c)

�
1� �

c0

�� 1
�

= lim
�!1

(1� c)
1
� lim
�!1

�
1� �

c0

� 1
�

= lim
�!1

�
c0
�
� 1
� 1
��

c0
�

� 1
�

= lim
�!1

�
�

�

� 1
1+�

(�
1� �T
1 + �B

� 1
�
�

1

1� c
c0
�

� 1
�
� 1
�

) 1
1+�

= lim
�!1

 �
1

�

� 1
�

! �
1+�

lim
�!1

(
�

�
1� �T
1 + �B

(1� c)
� 1

�

) 1
1+�

lim
�!1

�
1

1� c
c0
�

� 1
(1+�)�

= 1. �

Proof of Proposition 5
(a) The comparative statics with respect to c directly follows from Lemma 6(b) and the

expression of RB (A) � �B(x(A))
�T (A)

= 1+�B
1��T

�
c0
�
� 1
�
. Consider (�T ; �B). Evaluating RB (A) =
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1+�B
1��T

�
c0
�
� 1
�
by using (22) yields

RB (A) =

�
�

�

� �
1+�

8<:
 
1� c
c0
�
1+�B
1��T

!�
�
�1�

1 + �B
1� �T

��9=;
1

1+�

.

For � = �, RB (A) =
�
1+�B
1��T

� �
1+�

and the result obviously holds.

For � < �, because c0
�
is decreasing in (�T ; �B) (Lemma 6(a)), the result holds if�

1+�B
1��T

���(���1)
is weakly increasing in 1+�B

1��T . Therefore, a su¢ cient condition is ��
�
�
�
� 1
�
�

0, � � �
1+�
.

For � > �, it is su¢ cient to show that c0
�
1+�B
1��T is increasing in

1+�B
1��T . Using (22),

c0
�

1 + �B
1� �T

=
1 + �B
1� �T

+

�
�

�

� �
1+�

(�
1 + �B
1� �T

���
1

1� c
c0
�

1 + �B
1� �T

�1��
�

) 1
1+�

.

For � > �, the right hand side is an increasing and concave function of c0
�
1+�B
1��T , and it is

increasing in 1+�B
1��T . Hence,

c0
�
1+�B
1��T is increasing in

1+�B
1��T .

(b) The comparative statics with respect to �; � directly follows from Lemma 6(a) and
the expression of RB (A).
(c) The limits of RB (A) follow from Lemma 6(c) and the expression of RB (A). �

Proof or Proposition 6
(a) This follows from Lemma 6(d,e) and the expression of V .
(b) This follows from Lemma 6(d,e) and the expression of RB (A). �
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