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Abstract

Firms are heterogenous in their pre-investment values, so are the investment costs
and the realized returns. What is the relationship between pre-investment �rm values,
the investment costs they pay, and the realized returns? We derive a formula that
decomposes the marginal impact of pre-investment values on returns into an economic
e¤ect and a mechanical e¤ect, taking into account the endogeneity of investment.
It reveals that regressing realized returns on pre-investment values leads to a biased
estimate of the economic e¤ect, with the bias direction and magnitude depending on
relative investment size and realized returns. Correcting bias is straightforward for
data with only positive returns. For data in which returns take both sings, such as
takeovers, stronger assumptions are necessary to make a meaningful inference. We
conclude with suggestions for circumventing this issue. (JEL G11, G14, G34)
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1 Introduction

Firms and individuals make investments, expecting some forms of returns. Firms are het-

erogenous in their pre-investment values, so are the incurred investment costs and the realized

returns. What is the relationship between pre-investment �rm values, the investment costs

they pay, and the realized returns? The importance of understanding how �rm values a¤ect

their investment decisions and associated returns has long been recognized. See, for exam-

ple, a large empirical literature on determinants of acquirer returns in takeovers, recently

reviewed by Schneider and Spalt (2022). However, no simple, theoretical derivation of the

relationship among pre-investment �rm values, investment costs, and realized returns that

can be used to guide empirical works seems to be available. We attempt to �ll this gap.

We frame the problem as follows. Each transaction is identi�ed by three numbers, a pre-

investment �rm value V , investment cost P , and the post-investment �rm value bV . From�
V; P; bV �, a return on investment � � bV�V

P
(ROI for short) and a realized return R � bV�V

V

can be computed. If we believe that a �rm value V and an investment cost P matter at

the individual investment level, we should let � depend on V and P . Then, we can ask the

following question: Is R informative about how V a¤ects �? In particular, does regressing

R on V reveal an economic impact of V on �?

The di¢ culty of answering this question stems from the fact that there are three channels

through which V a¤ects R = � P
V
:

1. V a¤ects R through � (a �rm-value e¤ect).

2. V a¤ects R through the choice of P because:

(a) P a¤ects � (a matched investment-cost e¤ect).

(b) P multiplies �
V
(a matched investment-scale e¤ect).

3. V divides �P (a �rm-scale e¤ect).

The �rm-value e¤ect is the extent to which a pre-investment �rm value a¤ects returns by

improving a particular return on investment, taking other factors �xed. The two matched

investment e¤ects come from �rms� investment choice. For example, if �rms with larger

V optimally choose more costly investments (i.e., P and V are positively associated cross-

sectionally), then such an investment may directly a¤ect � (i.e., 2.(a)) or it may scale up

returns for a given level of � (i.e., 2.(b)). These e¤ects admit economic interpretations.

In contrast, the �rm-scale e¤ect is purely mechanical, as it follows from the way we

de�ne returns. As a simple example, suppose that �P are positive but random across �rms
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independent of V , i.e., both an investment and its ROI are determined by factors unrelated

to V , such as luck. Then, we should �nd that, on average, R would be smaller for �rms with

larger V . Clearly, this relationship should not be interpreted as an economic impact of V

on R. If we would like to learn how V a¤ects �, we need to isolate the �rm-value e¤ect from

the other e¤ects of V on R.

The paper is organized as follows. Section 2 introduces a model of investment. Section 3

contains our main analysis. Section 4 concludes with suggestions for empirical work.

2 A Model of Investment

We describe a model in a context of heterogenous �rms making �nancial investments, but

it can be applied to any individuals or organizations making costly investment, expecting

some form of returns. Each transaction is identi�ed by three numbers: a pre-investment

�rm value V , its investment spending P , and the post-investment �rm value bV . A return

on investment (ROI) is de�ned by changes in �rm values per unit of investment cost:

� �
bV � V
P

. (1)

ROI is positive if investment increases the �rm value (i.e., bV > V ), and negative otherwise.
A realized return from the investment is

R �
bV � V
V

= �
P

V
. (2)

By assuming P > 0 and V > 0, (1) and (2) imply that R and � have the same sign.

So far, we only used two de�nitions to construct a new data (�;R) from a raw data�
V; P; bV �. What can we learn from these data? We need to assume some economic structure.
We make two simple assumptions. First, we assume that both P and V may a¤ect �. For

example, for each investment opportunity, �rms can take various actions to increase ROI,

and the extent to which such actions are e¤ective may depend on pre-investment �rm value

V . Without imposing a particular form of these dependences, we write � (V; P ; "), where a

vector of random variables " captures other factors that a¤ect � independent of (V; P ). We

call " ROI shocks, or shocks for short. Second, we assume that �rms with V choose P to

maximize bV = �P + V , knowing how � depends on P . The optimal choice by �rm implies

some equilibrium relationship between P and V , which we denote by P � (V ; ").

One might argue that what matters for investors should be a realized return R. However,
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it depends on many factors beyond their control, captured by " in our model.1 If we are

interested in return variations attributable to �rms� characteristics, it is best captured by

�V � @�(V;P ;")
@V

. Accordingly, we ask the following questions: can regressing R on V reveal

information about �V ? How is the estimated regression coe¢ cient biased relative to �V ?

Observable ROI shocks. Suppose that " is observable at the time of investment.

A �rm with V solves

max
P
f� (V; P ; ")P + V g .

If � (V; P ; ") � 0 for any P , then the �rm would not invest. To interpret observed P as a

solution to this problem, we must assume � (V; P ; ") > 0. The �rst order condition is

� (V; P ; ") + P�P = 0, (3)

where �P � @�(V;P ;")
@P

. The next assumption ensures the interior optimum P � (V ; ") 2 (0;1).

Assumption 1 When " is observable, �P < 0 < � and @�P
@P

< �2�P
P
for any V; P; ".

Assumption 1 states that investment is pro�table, ROI is decreasing in investment cost
P , and bV = �P + V is well-behaved as a function of P . From a theoretical point of view, it

is a simple set of assumptions that connects data with a rational investment choice.2 From

an empirical point of view, it can be checked with data � and P .3

A realized return can be written as

R (V ; ") � � (V; P � (V ; ") ; ") P
� (V ; ")

V
. (4)

In the next section, we study the implication of (3) and (4) for the interpretation of regression

coe¢ cient obtained by regressing R on V .

Unobservable ROI shocks. A drawback of the above model is that it is not con-

sistent with negative realized returns. To rationalize a data with negative returns, we must

1Typically, return regressions leave the overall variation in returns largely unexplained. For example,
Golubov et al. (2015) �nd that unobservable �rm-speci�c factors mostly drive acquirer returns.

2Recall that � � bV�V
P and � > 0 , bV > V . Therefore, �P = bVPP�(bV�V )

P 2 < 0 is equivalent to bVP < �,
and it is implied by bVP � 0 for � > 0. If we further assume bV � F (V; P ; ")� P , then a su¢ cient condition
for �P < 0 is FP � 1.

3In a context of M&As, where V is a bidder �rm value and P a price of a target �rm, Schneider and
Spalt (2022) report that they cannot reject �P = 0 in their data. However, while statistically insigni�cant,
their Table 6 exhibits �P < 0 (especially for Non-Public �rms, for which � > 0). We discuss their work in
more details below.
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posit that at least some element of " must be unobservable to �rms at the time of invest-

ment and also that some realization of those shocks makes returns negative. With such

unobservable ROI shocks, a �rm with V solves

max
P
f� (V; P )P + V g ,

where � (V; P ) � E [� (V; P ; ")]. To rationalize observed P , we assume � (V; P ) > 0, but this
does not exclude � (V; P ; ") < 0 for some realizations of ". The �rst order condition is

� (V; P ) + P�P = 0, (5)

where �P � @�(V;P )
@P

. We make the following assumption.

Assumption 2 When " is unobservable, �P < 0 < � and @�P
@P

< �2�P
P
for any V; P .

With the interior optimal choice P
�
(V ), a realized return is

R (V ; ") � �
�
V; P

�
(V ) ; "

� P � (V )
V

. (6)

Realized returns (6) depend on �, but Assumption 2 does not determine the sign of � and
�P . Therefore, we need more assumptions to study the implication of (5) and (6) for the

regression analysis. We defer the further discussion to Section 3.2.

Remark 1. Jansen et al. (2013) study M&A data, where V is a bidder �rm value,

P a price of a target �rm, and a signi�cant fraction of realized returns are negative. They

note that preceding studies which regress R on relative size P
V
found the positive coe¢ cient

estimate (e.g., Asquith et al. (1983)) as well as the negative estimate (e.g., Fuller et al.

(2002)). Importantly, they show that when they split their sample by the sign of R, the

coe¢ cient estimate has the sign of R (p. 535, Figure 1). This is consistent with (6), if

changes in P
�

V
do not a¤ect � much.4

The above discussion indicates that the sign of realized returns matters for the regression

analysis. In Section 3, we focus on the regression of R on V , which is more prevalent in the

empirical literature.

4More formally, dR

d( PV )
= � + @�

@( PV )
P
V , which has the sign of � if

@�

@( PV )
P
V � 0.
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3 Implications for Regression Analyses

It is common practice to regress realized returns R on pre-investment �rm values V . It is

expected to reveal economic e¤ects of pre-investment �rm values on the post-investment

�rm values, such as negotiation powers and agency problems. In this section, we show that

when realized returns are largely driven by forces that are independent of pre-investment

�rm values and investment costs (in our model, " being a dominant force), then one may

obtain statistically signi�cant regression coe¢ cients, but they do not reveal economic e¤ects.

3.1 Observable ROI shocks

We take a total derivative of (4) with respect to V .

dR

dV
= �V

P �

V| {z }
1

+
P �V
V
(P ��P + �)| {z }
2(a)(b)

�R
V|{z}
3

, (7)

where �V � @�(V;P ;")
@V

and P �V �
@P �(V ;")
@V

. The �rst term �V
P �

V
is the �rm-value e¤ect. The

second term is the matched investment e¤ects. The third term �R
V
is the �rm-scale e¤ect.

We combine (7) with the �rm�s investment choice analyzed in the previous section.

Lemma 1 If the optimality condition (3) characterizes P � (V ; "), then (7) becomes

dR

dV
= �V

P �

V
� R
V
. (8)

Proof. The optimality condition (3) implies that the second term in (7) is zero. �

Lemma 1 shows that in the data in which P � and V are connected by the optimality

condition (3), the total marginal impact of V on R is the sum of two terms: (i) �V multiplied

by P �

V
, and (ii) �R

V
. This has two implications.

First, because realized returns R must be positive in this model, the �rm-scale e¤ect �R
V

creates a downward bias, regardless of the sign of �V . The magnitude of this additive bias

increases in R and decreases in V , suggesting more signi�cant downward bias for data in

which R is large relative to V .

Second, P
�

V
is smaller than one in most applications, because V is a stock variable (e.g.

market capitalization), while P is a �ow variable (e.g. investment expenditure). Therefore,���V P �V �� < j�V j holds. The direction of thismultiplicative bias depends on the sign of �V , while
its magnitude depends on relative investment size P �

V
. Given P �

V
< 1, �V P

�

V
underestimates
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positive �V and overestimates negative �V . Table 1 summarizes these implications.

Table 1

Bias of dR
dV
= �V

P �

V
� R

V
relative to �V .

Multiplicative bias P �

V
Total direction of bias

P �

V
< 1 	 for �V > 0 dR

dV
< �V

� for �V < 0 dR
dV
7? �V

P �

V
> 1 � for �V > 0 dR

dV
7? �V

	 for �V < 0 dR
dV
< �V

For R > 0, the additive bias �R
V
is negative and its magnitude is decreasing in V . On

the other hand, whether the multiplicative bias P �

V
in�ates or de�ates �V depends on the

sign of �V . This indicates the following trade-o¤. Suppose P �

V
< 1. Then, if P �

V
decreases in

V , the multiplicative bias becomes more signi�cant as V increases. This condition is likely

to hold in many applications where P �

V
is a ratio of particular investment expenditure to the

overall wealth. Then, for �rms with larger V , the magnitude of the additive bias �R
V
would

be smaller, but the multiplicative bias P �

V
makes dR

dV
further away from �V .

The model is simple and lacks many realistic features. However, precisely because it

does not depend on particular features of investment, we expect that the basic logic per-

sists through time, across industry sectors, and regardless of institutional details such as

regulations and payment methods.

3.2 Unobservable ROI shocks

By taking a total derivative of the realized return (6) with respect to V ,

dR

dV
= �V

P
�

V| {z }
1

+
P
�
V

V

�
P
�
�P + �

�
| {z }

2(a)(b)

�R
V|{z}
3

. (9)

By using the optimality condition (5), we obtain the following result.

Lemma 2 If the optimality condition (5) characterizes P
�
(V ), then (9) becomes

dR

dV
=

8<:
P
�

V
�V � R

V

n
1 + P

�
V
V

P
�

�
�P =�
�P =�

� 1
�o

for R 6= 0,
P
�

V

�
�V + P

�
V �P

�
for R = 0.

(10)

Proof. For R = 0, substitute R = � = 0 in (9). For R 6= 0, use P � = � �
�P
to write
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P
�
�P + � in (9) as ��

�
�P =�
�P =�

� 1
�
. Use �

V
= R

P
� to obtain the result. �

In (10), the additive bias for R 6= 0 can be written as

�R
V

�
1 + �P

�

V

�
��P
��P
� 1
��

, (11)

where �P
�

V � P
�
V
V

P
� is the elasticity of the optimal investment P

�
(V ), ��P � �P

P
�
is the

elasticity of � with respect to P , and ��P � �P P� is the elasticity of � with respect to P . If
��P = �

�
P , then (11) collapses to �R

V
. Otherwise, we must sign (11) to determine the direction

of bias. By Assumption 2, ��P < 0. The sign of �
P
�

V can be assessed empirically. However,

the term
�
��P
��P
� 1
�
is di¢ cult to sign empirically and theoretically.5

Remark 2. Schneider and Spalt (2022) assume �P = �V = 0 in their �pure scaling

model�. This implies dR
dV
= �R

V
and they empirically study the extent to which regression

coe¢ cients obtained for di¤erent quantiles of data, sorted by R and V , replicate the pattern

implied by �R
V
. However, assuming �P = �V = 0 is problematic from a perspective of our

model. First, �P = 0 implies �P = 0, which is inconsistent with P as an optimal choice by

�rms. Second, additionally assuming �V = 0 implies P
�
V = 0.6 However, P

�
V > 0 better

describes their data (see their Table 3 and 5). While �R
V
plays a major role in their data,

their analysis does not directly support �V = 0.

In the next section we propose a way to make an inference about �V when the additive

bias in (10) is signi�cant and di¢ cult to sign.

4 Discussion

4.1 Alternative regression speci�cation

One may wonder if simply regressing � on V can reduce biases. To show that this is not

necessarily the case, we focus on a case with observable shocks. De�ne �P
�

V � P �V V
P � .

Lemma 3 If the optimality condition (3) characterizes P � (V ; "), then the total mar-

ginal e¤ect of V on � is
d�

dV
= �V � �P

�

V

R

P �
. (12)

5By the implicit function theorem applied to (5), P
�
V =

1
V

��V ��
�P
V

1���P��
�P
P

. Thus, the sign of P
�
V (i.e., whether

P
�
(V ) increases or decreases in V ) is informative about the elasticities of � and �P with respect to V and

P . However, it does not sign
�
��P
��P
� 1
�
.

6Use �P = �V = 0 in the expression of P
�
V in the previous footnote.
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The additive bias ��P �V R
P � in (12) has the same sign as �

R
V
in (8), and is smaller in mag-

nitude, if and only if

0 < �P
�

V <
P �

V
. (13)

Proof. To obtain (12), substitute �P = � �
P � into

d�
dV
= �V + �PP

�
V and use �

P �
V �

P �V
V
P � and

�
V
= R

P � . The inequalities (13) follow by comparing �
�P

�
V

P � R and �
R
V
. �

In (12), the sign of the additive bias ��P �V R
P � depends not only on R but also on �P

�
V .

Hence, this regression speci�cation adds an additional layer of uncertainty associated with

�P
�

V . If it can be precisely estimated and one is con�dent that the condition (13) holds,

then for the purpose of learning �V , regressing � on V is more desirable than a usual return

regression of R on V . We note, however, that (13) can be written as 0 < P �V <
�
P �

V

�2
. For

applications where P �

V
is very small, this condition may be easily violated.

4.2 Bias correction in return regression

The analysis of the case with observable shocks suggests a straightforward way to make an

inference about �V . On the other hand, the bias in the case of unobservable shocks is harder

to sign, hence more di¢ cult to correct.

Observable ROI shocks. From (8),

V

P �

�
dR

dV

�
+
R

P �
= �V . (14)

This suggests the following bias correction procedure. First, for each quantile of data sorted

by V , obtain an estimate of
�
dR
dV

�
by regressing R on V . Second, adjust the coe¢ cient by

(14) using V
P � and

R
P � for the corresponding quantile of data. This procedure allows for the

estimation of �V for each quantile of V .

Unobservable ROI shocks. In general, the direction and the magnitude of the

additive bias (11) are di¢ cult to know. To minimize the e¤ect of the additive bias, we

propose a local regression with observations R � 0. Speci�cally, (10) for R = 0 implies

V

P
�

�
dR

dV

�
jR=0 =

�
�V + P

�
V �P

�
j�=0. (15)

This suggests a local inference using observations with R � 0. We still need to know

P
�
V �P j��0 to estimate �V j��0. However, if we can sign P

�
V �P around � � 0, (15) could be
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used to sign �V around � � 0. More precisely,

V

P
�

�
dR

dV

�
jR�0 > 0 ) �V j��0 > �P

�
V �P j��0,

V

P
�

�
dR

dV

�
jR�0 < 0 ) �V j��0 < �P

�
V �P j��0.

For example, if one �nds V

P
�
�
dR
dV

�
jR�0 > 0, P

�
V > 0, and �P j��0 < 0, then �V j��0 has a

positive lower bound �P �V �P j��0.

Remark 3. For the local estimation based on (15), Figure 2 in Schneider and Spalt

(2022) is suggestive. They plot estimated dR
dV
for each quantile (decile) of R. If dR

dV
= �R

V
, as

they argue, then the estimated coe¢ cient should be close to zero for the quantile including

R = 0. However, they �nd dR
dV
jR�0 < 0 for a subsample with non-public targets, and

dR
dV
jR�0 > 0 for the remaining subsample with public targets.7 They do not report the value

of �P j��0 for the corresponding quantile of data. However, if �P j��0 < 0 holds for the

subsample with public targets, then (15) indicates �V j��0 > �P
�
V �P j��0 > 0, i.e., �rms with

larger V have higher ROI when taking over public targets.
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