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1 Introduction

We present a model of inter-bank market where heterogeneous banks trade risky asset.

Unlike most models in the banking literature, we assume that banks are risk-averse. Another

key feature of the model is that limited liability induces relatively more e¢ cient banks to

endogenously borrow and take additional risk in the inter-bank market. We prove some

preliminary results and discuss other aspects of the model to be investigated.

2 Model

There is a continuum of banks. We assume that all banks have a mean-variance preference

E [�] � 
2
V ar [�] over their pro�t �, where  > 0 is a risk-aversion parameter. There are

three stages, ex ante, interim and ex post. Banks act at the ex ante stage and the ex post

stage. At the ex ante stage, all banks are homogenous. They start with the same amount
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of safe asset A > 0 with return R0. They choose (identical) investment V with a stochastic

return eR per unit (e.g. lending) and a safe asset position W = A � V with a return R0

per unit (e.g. short-term government debt). At the interim stage, each bank independently

draws a high success probability pH of the risky asset with probability � 2 (0; 1), or a low

success probability pL < pH with probability 1��. By the law of large numbers, a measure �

of banks have a high success probability. For type i 2 fL;Hg banks, eR = R with probability
pi and eR = 0 with probability 1� pi. Banks with pH are called H-banks and banks with pL
are called L-banks. Let !i � pi (1� pi) for i 2 fH;Lg.

Assumption 1 1
2
� pL < pH < 1.

Assumption 1 implies 0 < !H < !L � 1
4
, which means that H-banks face a higher mean

return E
h eRi = pHR as well as a lower variance of return V ar h eRi = !HR2. Therefore, type

H is a better type. This heterogeneity leads to ex post trading of risky loan between L-banks

and H-banks.

At the ex post stage, banks can trade a unit of risky asset with Q units of safe asset. Q

will be determined in a market-clearing equilibrium. When choosing V at the ex ante stage,

banks rationally anticipate what will happen at the interim and the ex post stage.

In Section 3, we study banks�ex post trading problem for a given priceQ. We explain how

problem changes depending on whether H-banks borrow or not. In Section 4, we de�ne two

types of market-clearing equilibria, and explain how they might coexist (i.e., equilibrium

multiplicity). We also explain banks� ex ante investment problem. In Section 5, we list

remaining tasks to be done.

3 Ex post trading

At the ex post stage, banks take V < A as given, and trade the risky asset to change their

position from V to k+V . Positive k > 0 corresponds to a purchase, while k < 0 corresponds

to a sales. We assume that banks can borrow a safe asset at rate B > R0 up to the amount
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that can be used for the purchase of risky asset, i.e., Qk > 0. Banks�risk pro�le changes

depending on their choice of borrowing. We �rst consider a case where banks do not borrow.

In the later subsection we study how borrowing changes banks�behavior.

3.1 Optimal trading without borrowing

We �rst consider a case where the purchase of risky asset is within the initial safe asset

position, i.e., Qk � A� V . A pro�t for type i banks is

�i (k) =

8><>: R (V + k) + (A� V �Qk)R0 with probability pi

(A� V �Qk)R0 with probability 1� pi.

By limiting the ex post risky asset position up to A�V
Q
+V = A+(Q�1)V

Q
, banks can secure the

minimum pro�t of (A� V �Qk)R0 � 0 independent of their types. Therefore, we de�ne

non-risky pro�t by

�NR (k;Q) � (A� V �Qk)R0.

For k � A�V
Q
, �NR (k;Q) is non-negative and decreases in k. Using �NR (k;Q) = fA+ (Q� 1)V gR0�

(V + k)QR0, a mean and variance of �i (k) is

Ei [�i (k)] = piR (V + k) + �
NR (k;Q)

= (piR�QR0) (V + k) + fA+ (Q� 1)V gR0,

Vi [�i (k)] = !iR
2 (V + k)2 .

The associated payo¤ is

Ui (k;Q) = (piR�QR0) (V + k)�


2
!iR

2 (V + k)2 + fA+ (Q� 1)V gR0. (1)
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Taking a price Q given, banks choose k to maximize (1). Ignoring a term independent of

k, and noting that a risky asset position V + k cannot be negative (i.e., a short-selling

constraint), banks solve

max
k

n
(piR�QR0) (V + k)�



2
!iR

2 (V + k)2
o

subject to � V � k � A� V
Q

.

For trading to occur, chosen k must be positive for some banks and negative for other banks.

GivenAssumption 1, the short-selling constraint �V � k is relevant only for L-banks while

the borrowing constraint k � A�V
Q
is relevant only for H-banks. Therefore, a solution to this

problem is the following optimal order k�i (Q) for i 2 fL;Hg:

k�L (Q) � max
(
pL �QR0

R

R!L
� V;�V

)
and k�H (Q) � min

(
pH �QR0

R

R!H
� V; A� V

Q

)
(2)

For any given Q, we denote by U�i (Q) � Ui (k�i (Q) ;Q) the payo¤ for type i banks submitting

(2). When the order (2) is unconstrained (i.e., k�i (Q) =
pi�QR0

R

R!i
� V 2

h
0; A�V

Q

i
),

U�i (Q) = Ui

 
pi �QR0

R

R!i
;Q

!
= fA+ (Q� 1)V gR0 +

1

2

pi
1� pi

�
piR�QR0

piR

�2
. (3)

When L-banks are constrained (i.e., pL �QR0
R
< 0),

U�L (Q) = UL (�V ;Q) = �NR (�V ;Q) = fA+ (Q� 1)V gR0.

When H-banks are constrained (i.e., pH�Q
R0
R

R!H
> A�V

Q
+ V ),

U�H (Q) = UH

�
A� V
Q

;Q

�
=
pHR

Q
fA+ (Q� 1)V g � 

2

1� pH
pH

�
pHR

Q
fA+ (Q� 1)V g

�2
.
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In sum, the payo¤ after trading without borrowing is

U�i (Q) =

8>>>>>>>>>>><>>>>>>>>>>>:

fA+ (Q� 1)V gR0

+ 1
2

pi
1�pi

�
piR�QR0
piR

�2 for i 2 fL;Hg if
QR0

R
� pL and

pH�Q
R0
R

R!H
� A�V

Q
+ V ,

fA+ (Q� 1)V gR0 for i = L if QR0
R
> pL,

fA+ (Q� 1)V g pHR
Q

�
2
1�pH
pH

h
fA+ (Q� 1)V g pHR

Q

i2 for i = H if pH�Q
R0
R

R!H
> A�V

Q
+ V .

(4)

3.2 Optimal trading with borrowing

Next, we consider a case where banks borrow at rate B > R0 to fund the purchase of

risky asset. We assume that banks can borrow at most Qk, and consider two cases. First,

Qk 2 (0; A� V ] such that borrowing is not necessary. We will show below that borrowing

may occur even in this case because of limited liability. Second, Qk > A � V such that

borrowing is absolutely necessary to achieve a risky asset position k + V .

Borrow and buy Qk 2 (0; A� V ]. Banks do not need to borrow to buy k 2�
0; A�V

Q

i
units of risky asset, but they still can. Let X 2 [0; Qk] be the amount borrowed.

H-banks�ex post safe asset position becomes A� V � (Qk �X). A pro�t for H-banks is

b�H �k � A� V
Q

;X

�
=

8><>: R (V + k) +R0 fA� V � (Qk �X)g �BX with probability pH

[R0 fA� V � (Qk �X)g �BX]+ with probability 1� pH ,

where [R0 fA� V � (Qk �X)g �BX]+ is a positive part of R0 fA� V � (Qk �X)g �

BX. For the choice of X 2 [0; Qk], notice that if R0 fA� V � (Qk �X)g � BX =

R0 (A� V �Qk) � (B �R0)X is strictly positive, by reducing X, H-banks can increase

the mean of their pro�t without a¤ecting its variance. Therefore, whenever possible, they
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choose X such that [R0 fA� V � (Qk �X)g �BX]+ = 0. That is,

X � R0
B �R0

(A� V �Qk) � X (k) . (5)

For such a choice of X to be feasible, we need X (k) � Qk , k � R0
B
A�V
Q
. For a given

k 2
h
R0
B
A�V
Q
; A�V

Q

i
, X (k) de�ned in (5) is the minimum amount of borrowing that makes

[R0 fA� V � (Qk �X)g �BX]+ = 0. On the (k;X)-plane, two lines X = Qk and X =

X (k) have a unique intersection (k;X) =
�
R0
B
A�V
Q
; R0(A�V )

B

�
. Hence,

�
(k;X) jX 2 [X (k) ; Qk] ; k 2

�
R0
B

A� V
Q

;
A� V
Q

��

forms a triangular region on the (k;X)-plane.

Denoting the success pro�t by

�1 (k;X) � (R�R0Q) k � (B �R0)X +R0A+ (R�R0)V ,

H-banks�problem can be written as

max
(k;X)

n
pH�1 (k;X)�



2
!H (�1 (k;X))

2
o

(6)

subject to (k;X) 2
�
(k;X) jX 2 [X (k) ; Qk] ; k 2

�
R0
B

A� V
Q

;
A� V
Q

��
.

We observe two facts. First, given R > R0Q, �1 (k;X) is increasing in k and decreasing in

X. Second, (6) is maximized when �1 (k;X) = 1


1
1�pH and achieves

1

2

pH
1� pH

� bUH ,
which is independent of (Q; V;A;B;R;R0). We de�ne the �iso-payo¤� line on the (k;X)-
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plane by
n
(k;X) j�1 (k;X) = 1


1

1�pH

o
. This is linear in (k;X):

X =
R�R0Q
B �R0

k � R

B �R0

�
1

R

1

1� pH
� V � R0 (A� V )

R

�
� XIP

1 (k) . (7)

Solutions to the problem (6) are characterized as a segment of the iso-payo¤ line (7) inside

the triangular area
n
(k;X) jX 2 [X (k) ; Qk] ; k 2

h
R0
B
A�V
Q
; A�V

Q

io
. Importantly, both X (k)

and XIP
1 (k) increase in A, but they have a unique intersection that does not depend on A:

X (k) = XIP
1 (k), k =

1

R

1

1� pH
� V � kLB. (8)

For the remaining analysis, we proceed under a conjecture R�R0Q
B�R0 > Q > 0,

R
Q
> B > R0.

This needs to be veri�ed in any equilibrium. In particular, R�R0Q
B�R0 > Q implies that the

iso-payo¤ line (7) goes through the triangular area if and only if

A 2
�
A (Q) ; A

�
BQ

R0

��
.

The lower bound A (Q) is a value of A that solves X
�
A�V
Q

�
= XIP

1

�
A�V
Q

�
and is given by

A (Q) � Q 1

R

1

1� pH
+ (1�Q)V = V +QkLB. (9)

The upper bound A
�
BQ
R0

�
solves X

�
R0
B
A�V
Q

�
= XIP

1

�
R0
B
A�V
Q

�
and is given by

A

�
BQ

R0

�
=
BQ

R0

1

R

1

1� pH
+

�
1� BQ

R0

�
V = V +

BQ

R0
kLB. (10)

Given B > R0, A (Q) < A
�
BQ
R0

�
holds if and only if kLB > 0. Also,

A < A

�
BQ

R0

�
, A� V < BQ

R0
kLB.
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Therefore, for any given A � V > 0, A < A
�
BQ
R0

�
implies kLB > 0 and hence A (Q) <

A
�
BQ
R0

�
.

Because solutions to (6) are not unique for A 2
�
A (Q) ; A

�
BQ
R0

��
, we assume that if

there are multiple combinations of (k;X) that achieve the same payo¤ bUH , H-banks choose
the one with minimum borrowing. This yields a unique solution

�
kLB; XLB

�
, where kLB is

given in (8) and

XLB � X
�
kLB

�
=

R0
B �R0

�
A� V �QkLB

�
=

R0
B �R0

�
A� A (Q)

�
. (11)

The super script LB stands for �leveraged buy�. All in all, borrowingXLB 2
�
0; R0

B
(A� V )

�
given in (11) and buying kLB 2

h
R0
B
A�V
Q
; A�V

Q

i
given in (8) achieves the payo¤ bUH if and only

if A 2
h
A (Q) ; A

�
BQ
R0

�i
. Note that this nests a boundary �no borrowing�case

�
kLB; XLB

�
=�

A�V
Q
; 0
�
for A = A (Q).

Borrow and buy Qk > A� V . In this case, H-banks need to borrow at least

Qk � (A� V ) � X (k) 2 (0; Qk) . (12)

With limited liability, the failure of risky investment means zero pro�t for any k > A�V
Q
. By

borrowing X 2
�
X (k) ; Qk

�
, a pro�t for H-banks is

b�H �k > A� V
Q

;X

�
=

8><>: R (V + k)�BX with probability pH

0 with probability 1� pH .

Proceeding similarly as before, we denote the success pro�t by �2 (k;X) � R (V + k)�BX.

H-banks�problem can now be written as

max
(k;X)

n
pH�2 (k;X)�



2
!H (�2 (k;X))

2
o

(13)

8



subject to k >
A� V
Q

and X � X (k) .

An iso-payo¤ line
n
(k;X) j�2 (k;X) = 1


1

1�pH

o
can be written as

X =
R

B
k � R

B

�
1

R

1

1� pH
� V

�
=
R

B

�
k � kLB

�
� XIP

2 (k) , (14)

where kLB was de�ned in (8). Because R
B
> Q, solutions to the problem (13) are characterized

as a line segment of (14) that is above X (k) on the (k;X)-plane. Note that X (k) decreases

in A while XIP
2 (k) is independent of A. Also, XIP

2

�
kLB

�
= 0. Therefore, solutions to the

problem (13) are greater than kLB whenever they exist. Because H-banks choose to minimize

borrowing when multiple (k;X) can achieve the payo¤ bUH = 1
2

pH
1�pH , the unique solution is

given by the intersection of X (k) and XIP
2 (k), which is

kLB (Q) � RkLB �B (A� V )
R�QB =

1


1
1�pH � fBA+ (R�B)V g

R�QB . (15)

XLB (Q) � X
�
kLB (Q)

�
=

R

R�QB
�
A (Q)� A

	
. (16)

Comparing kLB with kLB (Q), kLB > kLB (Q) , (R�QB) kLB > RkLB � B (A� V ) ,

QkLB < A� V . Therefore, kLB must be positive for kLB (Q) to be positive. Given R > QB

and kLB > 0, it is straightforward to show the following relationship:

A�V
Q
< kLB < kLB (Q) , A < A (Q) ,

kLB (Q) < kLB < A�V
Q

, A (Q) < A.

All in all, borrowing XLB (Q) given in (16) and buying kLB (Q) > A�V
Q
given in (15) achieves

the payo¤ bUH if and only if A 2 �V;A (Q)�.
Summary. With limited liability, H-banks can achieve the payo¤ bUH � 1

2
pH
1�pH by
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submitting kLB 2
h
R0
B
A�V
Q
; A�V

Q

i
or kLB (Q) > A�V

Q
under the following conditions:

R

Q
> B > R0 and A � A

�
B

R0
Q

�
, (17)

A 2
�
A (Q) ; A

�
B

R0
Q

��
) kLB 2

�
R0
B

A� V
Q

;
A� V
Q

�
, (18)

A 2
�
V;A (Q)

�
) kLB (Q) >

A� V
Q

(19)

In addition to (17), if bUH � 1
2

pH
1�pH � U

�
H (Q), then leveraged buy

�
kLB; XLB

�
or
�
kLB (Q) ; XLB (Q)

�
is indeed optimal for H-banks.

4 Ex ante investment

Before turning to the analysis of ex ante decision making, we point out that there are two

types of market-clearing equilibria at the ex post trading stage.

De�nition 1 (market-clearing equilibrium)

Q�-equilibrium is a market-clearing equilibrium where H-banks submit k�H (Q) and Q
�

clears the market, i.e., �k�H (Q
�) + (1� �) k�L (Q�) = 0.

QLB-equilibrium is a market-clearing equilibrium where H-banks submit kLB or kLB (Q)

and QLB clears the market, i.e., �kLB+(1� �) k�L
�
QLB

�
= 0 or �kLB (Q)+(1� �) k�L

�
QLB

�
=

0.

First, consider Q�-equilibrium. If (17) holds at Q = Q�, then achieving the payo¤ bUH by
submitting kLB or kLB (Q�) is feasible. In this case, the Q�-equilibrium must satisfy

U�H (Q
�) � bUH � 1

2

pH
1� pH

. (20)

If (17) does not hold at Q = Q�, then (20) is not necessary for the Q�-equilibrium.
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Second, consider QLB-equilibrium. Because submitting k�H
�
QLB

�
is always individually

feasible, it must satisfy (17) at Q = QLB, and

bUH � 1

2

pH
1� pH

� U�H
�
QLB

�
. (21)

From (20) and (21), two types of equilibria may coexist if and only if

bUH 2 �U�H �QLB� ; U�H (Q�)� 6= ?.
It follows that whenever the two equilibria coexist, H-banks prefer Q�-equilibrium to QLB-

equilibrium.

At the ex ante stage, banks are identical. Therefore, they solve the following problem.

In a Q�-equilibrium,

max
V 2[0;A]

f�U�H (Q�) + (1� �)U�L (Q�)g

s.t. (20) if (17) holds at Q�.

In a QLB-equilibrium,

max
V 2[0;A]

n
�bUH + (1� �)U�L �QLB�o

s.t. (17) at QLB and (21).

We assume that when two types of equilibria coexist (i.e., for a set of values of V for which

both problems above are well-de�ned), banks choose the one with the higher ex ante payo¤.

Because at the ex post stage H-banks always prefer a Q�-equilibrium to a QLB-equilibrium

for the same V , a su¢ cient condition for a Q�-equilibrium to be chosen ex ante is that

U�L (Q
�) � U�L

�
QLB

�
for the same V .
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5 Characterizing Q�-equilibrium

In this section, we focus on a Q�-equilibrium. A market-clearing price Q� solves the market-

clearing condition

�k�H (Q) + (1� �) k�L (Q) = 0, (22)

where k�L (Q) and k
�
H (Q) are given in (2). Depending on whether k

�
i (Q) is constrained or

not for i 2 fL;Hg, there are four potential cases to consider:

Buy orders

�
�
pHR�QR0
!HR2

� V
�

�A�V
Q

Sell (1� �)
�
pLR�QR0
!LR2

� V
�

Q�1-eqb Q�3-eqb

orders � (1� �)V Q�2-eqb Q�4-eqb

For example, all banks submit unconstrained orders inQ�1-equilibrium, while all banks submit

constrained orders in Q�4-equilibrium.

De�nition 2 (robust Q�-equilibrium) Q�k-equilibrium is robust if either:

(Type I robustness) ( 17) does not hold, or

(Type II robustness) ( 17) and U�H (Q
�
k) � bUH hold.

In De�nition 2, Type I robustness is the case where bUH is not achievable at Q�k, while
Type II robustness is the case where bUH is achievable but no greater than U�H (Q�k).
First, we ignore the robustness and derive a market-clearing price Q�k. We characterize

conditions in terms of (V;A;R) under which each case arises (Lemmas 1 through 4). We

de�ne the following variables:


 �
�
�

!H
+
1� �
!L

��1
, ! � �!L

�!L + (1� �)!H
2 (0; 1) , p� � !pH + (1� !) pL,

bV � �pH � pL
R!H

. (23)
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Note that 
 is a harmonic mean of f!H ; !Lg. Also, 
 and ! satisfy !


= �

!H
and 1�!



= 1��

!L
.

Lemma 1 Equilibrium with Q�1 =
R
R0
(p� � 
RV ) arises for (V;A;R) such that

V � bV and
pH �Q�1R0R
R!H

Q�1 + V (1�Q�1) � A. (24)

Proof. The market-clearing condition (22) becomes �pH�Q
R0
R

R!H
+(1� �) pL�Q

R0
R

R!L
= V .

Solving this for Q yields the expression of Q�1. For sellers not to be constrained, we need

pLR � Q�1R0, which is equivalent to V � bV . For buyers not to be constrained, we need
pH�Q�1

R0
R

R!H
� V � A�V

Q�1
, which is equivalent to (24). �

Lemma 2 Equilibrium with Q�2 =
R
R0

�
pH � !H RV

�

�
arises for (V;A;R) such that

V < bV and
pH �Q�2R0R
R!H

Q�2 + V (1�Q�2) � A. (25)

Proof. The market-clearing condition (22) becomes �pH�Q
R0
R

R!H
= V . Solving this for

Q yields the expression of Q�2. For sellers to be constrained, we need pLR < Q
�
2R0, which is

equivalent to V < bV . For buyers not to be constrained, we need pH�Q�2
R0
R

R!H
�V � A�V

Q�2
, which

is equivalent to (25). �

Lemma 3 Equilibrium with Q�3 2
�
0; pLR

R0

�
, a unique solution to �A�V

Q
+(1� �)

�
pL�Q

R0
R

R!L

�
=

(1� �)V , arises for (V;A;R) such that

A < min

(�
1� �
�

pLR

R0
+ 1

�
V;

 
pH �Q�3R0R
R!H

� V
!
Q�3 + V

)
.

Proof. For sellers not to be constrained, we need Q�3 <
pLR
R0
. The market-clearing

condition (22) becomes �A�V
Q
+(1� �)

�
pL�Q

R0
R

R!L

�
= (1� �)V . The left hand side is decreas-

ing in Q, and it increases without bound as Q ! 0, while it decreases to � (A� V ) R0
pLR

as

Q! pLR
R0
. Therefore, � (A� V ) R0

pLR
< (1� �)V is necessary and su¢ cient for the existence

of the unique solution Q�3 2
�
0; pLR

R0

�
. This condition is equivalent to A <

�
1��
�

pLR
R0
+ 1
�
V .
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For buyers to be constrained, we need pH�Q�3
R0
R

R!H
� V > A�V

Q�3
, which is equivalent to A <�

pH�Q�3
R0
R

R!H
� V

�
Q�3 + V . �

Lemma 4 Equilibrium with Q�4 =
1��
�

A�V
V

arises for (V;A;R) such that V < bV
and �

1� �
�

pLR

R0
+ 1

�
V < A <

�
1� �
�

R

R0

�
pH � !H

RV

�

�
+ 1

�
V .

Proof. The market-clearing condition (22) becomes �A�V
Q
= (1� �)V . Solving this

for Q yields the expression of Q�4. For sellers to be constrained, we need pLR < Q
�
4R0, which

is equivalent to
�
1��
�

pLR
R0
+ 1
�
V < A. For buyers to be constrained, we need pH�Q�4

R0
R

R!H
�V >

A�V
Q�4
, which is equivalent to A <

n
1��
�

R
R0

�
pH � !H RV

�

�
+ 1
o
V . For any V > 0, the

speci�ed range for A is nonempty if and only if V < bV . �

To characterize the robustness condition, recall from (4) that the payo¤ of H-banks in

Q�k-equilibrium, k 2 f1; 2g, is

U�H (Q
�
k) = fA+ (Q�k � 1)V gR0 +

1

2

pH
1� pH

�
pHR�Q�kR0

pHR

�2
.

Then U�H (Q
�
k) � bUH for k 2 f1; 2g is
fA+ (Q�k � 1)V gR0 +

1

2

pH
1� pH

�
pHR�Q�kR0

pHR

�2
� 1

2

pH
1� pH

which is equivalent to

pH � 1
2
Q�k

R0
R

R!H
Q�k + V (1�Q�k) � A, k 2 f1; 2g . (26)

The left hand side of (26) is independent of A for k 2 f1; 2g.

Proposition 1
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(a) The condition ( 26) implies ( 24) for k = 1 and ( 25) for k = 2.

(b) U�H (Q
�
k) <

bUH for k 2 f3; 4g.

Proof.

(a) For Q�k > 0, the left-hand side of (26) is greater than the left-hand side of (24) and

that of (25).

(b) From (4), the payo¤ of H-banks submitting A�V
Q

is

UH

�
A� V
Q

;Q

�
=

�
fA+ (Q� 1)V g pHR

Q

�
� 
2

1� pH
pH

�
fA+ (Q� 1)V g pHR

Q

�2
.

This takes the maximum value 1
2

pH
1�pH when pHR

Q
fA+ (Q� 1)V g = 1


pH
1�pH . Otherwise,

UH

�
A�V
Q
;Q
�
< 1

2
pH
1�pH . Because

pHR
Q
fA+ (Q� 1)V g = 1


pH
1�pH , R (A� V ) = Q

�
1


1
1�pH �RV

�
,

it su¢ ces to show that R (A� V ) 6= Q�k
�
1


1
1�pH �RV

�
for k 2 f3; 4g.

ForQ�3, recall fromLemma 3 thatR (A� V ) < min
n
1��
�

pLR
R0
RV;

�
RpH�Q�3R0
R!H

�RV
�
Q�3

o
.

Because
�
RpH�Q�3R0
R!H

�RV
�
Q�3 <

�
1


1
1�pH �RV

�
Q�3, it followsR (A� V ) < Q�3

�
1


1
1�pH �RV

�
.

For Q�4, use Q
�
4 =

1��
�

A�V
V

to rewrite R (A� V ) = Q�4
�
1


1
1�pH �RV

�
to RV = �


1

1�pH .

This cannot be satis�ed because, from Lemma 4, RV < �
!H

(pH � pL) = �


1
1�pH

pH�pL
pH

<

�


1
1�pH . �

By Proposition 1, the condition U�H (Q
�
k) � bUH (i.e., Type II robustness) needs to be

checked only for k 2 f1; 2g. For k 2 f3; 4g, Q�k-equilibrium characterized in Lemma 3 or 4

is robust if and only if (17) does not hold (i.e., Type I-robustness is the only possibility).

To characterize Type II robust Q�1- and Q
�
2-equilibrium, we de�ne the following functions

and variables.

G1 (V ) � a1V 2 + b1V + c1, where

a1 �
R

R0


R

2

�
2� 


!H

�
, b1 � �

R

R0

�



!H
pH +

�
1� 


!H

�
p� � R0

R

�
, c1 �

1

R0

1

2

p� (2pH � p�)
!H

.

G2 (V ) � a2V 2 + b2V + c2, where

15



a2 �
R

R0

!HR

�

2�� 1
2�

, b2 � �
R

R0

�
pH �

R0
R

�
, c2 �

1

R0

1

2

pH
1� pH

.

Note that R0c2 = 1
2

pH
1�pH �

bUH .
Lemma 5 (G1 and G2)

(a) The condition ( 26) is equivalent to Gk (V ) � A. Also, G1
�bV � = G2 �bV �.

(b) b1 < b2 and 0 < c1 < c2.

(c) a2 < 0 < a1 , � 2
�
1
2
!L�2!H
!L�!H ;

1
2

�
.

(d) For � < 1
2
, G1 (V ) is increasing in V � 0 if and only if � b1

2a1
� 0.

Otherwise, G1 (V ) takes the minimum value at V = � b1
2a1
> 0.

(e) For � > 1
2
!L�2!H
!L�!H , G2 (V ) is decreasing in V � 0 for any given R �

R0
pH
while

it takes the maximum value at V = � b2
2a2
> 0 for any given R < R0

pH
.

Proof.

(a) Substituting the expression of Q�k into the left-hand side of (26) yields Gk (V ) � A.

From Lemmas 1 and 2, Q�1
�bV � = Q�2 �bV � = pLR

R0
, which implies G1

�bV � = G2 �bV �.
(b) First, 


!H
pH+

�
1� 


!H

�
p� = pH+

�


!H
� 1
�
(pH � p�). Then 


!H
= !

�
= !L

�!L+(1��)!H 2�
1; !L

!H

�
implies that b1 = b2� R

R0

�


!H
� 1
�
(pH � p�) < b2. Second, c1 = c2 p

�

pH

�
2� p�

pH

�
> 0,

where p�

pH

�
2� p�

pH

�
� 1 with the equality holding if and only if p�

pH
= 1, � = 1.

(c) First, a2 < 0 , � < 1
2
is obvious. Second, 0 < a1 , 
 < 2!H , 1

�
!H

+ 1��
!L

< 2!H ,

1 < 2�+ 2 (1� �) !H
!L
, 1� 2!H

!L
< 2�

�
1� !H

!L

�
, 1

2
!L�2!H
!L�!H < �.

(d,e) This follows from the property of quadratic equations G1 and G2. �

Given Lemma 5, we de�ne the following variables:

V 1 � �
b1
2a1

=
pH +

�
!
�
� 1
�
(pH � p�)� R0

R

R

�
2� !

�

� ,

V 2 � �
b2
2a2

= � �2

1� 2�
pH � R0

R

R!H
,

A1 � G1 (V 1) = c1 �
b21
4a1
,

16



A2 � G2
�bV � = G1 �bV � .

Importantly, a2 < 0 < a1 implies

V 1 = argmin
V
G1 (V ) , A1 = min

V
G1 (V ) , V 2 = argmax

V
G2 (V ) .

Recall that Q�1-equilibrium requires V � bV while Q�2-equilibrium requires V < bV . BecausebV , V 1, and V 2 all depend on R, we need to consider various threshold values of R to consider
the ex ante optimal choice of V .

We denote the ex ante optimal choice of V by V �. For k 2 f1; 2g, let V �k be the ex ante

optimal choice of V in Q�k-equilibrium that ignores the condition (26).

De�nition 3 Q�k-equilibrium, k 2 f1; 2g, is unconstrained if the constraint ( 26) is

not binding, i.e., V � = V �k and A � Gk (V
�
k ). It is constrained if the constraint ( 26) is

binding, i.e., Gk (V �k ) > A � Gk (V �).

We �rst characterize an unconstrained equilibrium.

Proposition 2 (unconstrained equilibrium)

An unconstrained Q�k-equilibrium, k 2 f1; 2g, with positive V � is robust if A � A� �
pH� 1

2
R0
R

R!H
and R > R0

pH
. In particular, Q�1-equilibrium with V �1 =

p��R0
R

R

� bV and Q�1 = 1

prevails for R � R0
pL
, while Q�2-equilibrium with V �2 = �

pH�
R0
R

R!H
2
�
0; bV � and Q�2 = 1 prevails

for R 2
�
R0
pH
; R0
pL

�
.

Proof. With Q�k = 1, the constraint (26) becomes A � A� �
pH� 1

2
R0
R

R!H
. Hence it

su¢ ces to show that choosing V that makes Q�k = 1 is ex ante optimal for k 2 f1; 2g.

For Q�1-equilibrium, the ex ante objective is

U�1 � �U�H (Q
�
1) + (1� �)U�L (Q�1)

= fA+ (Q�1 � 1)V gR0 +
1

2

264 � pH
1�pH

�
pHR�Q�1R0

pHR

�2
+(1� �) pL

1�pL

�
pLR�Q�1R0

pLR

�2
375 .

17



To take the derivative of U�1 with respect to V , note that
@Q�1
@V

= �R2

R0

< 0 and @
@V

�
piR�Q�1R0

piR

�2
=

2

piR�Q�1R0

p2i
for i 2 fH;Lg. Therefore,

@U�1
@V

=

�
Q�1 � 1�

R2


R0
V

�
R0 + 


264 � pH
1�pH

pHR�Q�1R0
p2H

+(1� �) pL
1�pL

pLR�Q�1R0
p2L

375
= (Q�1 � 1)R0 + 


�
�
pHR�Q�1R0

!H
+ (1� �) pLR�Q

�
1R0

!L
� R2V

�
= (Q�1 � 1)R0.

The last equality holds from the market-clearing condition. Because @Q�1
@V

< 0, there is a

unique optimal V that solves Q�1 (V ) = 1. This yields V
�
1 =

p��R0
R

R

, which is positive for any

R > R0
p� >

R0
pH
.

The reasoning forQ�2-equilibrium is similar. From (4), the payo¤for sellers is fA+ (Q�2 � 1)V gR0.

The ex ante objective is

U�2 � �U�H (Q
�
2) + (1� �) fA+ (Q�2 � 1)V gR0

= fA+ (Q�2 � 1)V gR0 +
�

2

pH
1� pH

�
pHR�Q�2R0

pHR

�2
.

To take the derivative of U�2 with respect to V , note that
@Q�2
@V

= �R2

R0

!H
�
< 0 and @

@V

�
pHR�Q�2R0

pHR

�2
=

2
�
1�pH
pH

(pHR�Q�2R0). Therefore,

@U�2
@V

=

�
Q�2 � 1�

R2

R0

!H
�
V

�
R0 + (pHR�Q�2R0)

= (Q�2 � 1)R0 + pHR�Q�2R0 � R2
!H
�
V

= (Q�2 � 1)R0.

The last equality holds from the market-clearing condition. Because @Q�2
@V

< 0, there is a

unique optimal V that solves Q�2 (V ) = 1. This yields V
�
2 = �

pH�
R0
R

R!H
, which is positive for

any R > R0
pH
.
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Finally, it is straightforward to show that V �1 < V �2 <
bV , R < R0

pL
and V �1 > V �2 >bV , R > R0

pL
. �

From the proof of Proposition 2, G1 (V �1 ) = G2 (V
�
2 ) =

pH� 1
2
R0
R

R!H
� A�. Because A�

is maximized at R = R0
pH
with the maximum value c2, A� is decreasing in R for R > R0

pH
.

Also, A� = G2 (V
�
2 ) and A2 � G2

�bV � intersect at R = R0
pL
, V �2 = bV . Because G2 (V )

is decreasing in V for any R > R0
pH
, R 7 R0

pL
, V �2 7 bV , A� ? A2. Also, because V 2 =

� �2

1�2�
pH�

R0
R

!HR
= � �

1�2�V
�
2 , V 2 and V

�
2 have opposite signs and

��V 2�� < jV �2 j for � < 1
2
. With

these properties, we characterize the relationship between bV and V 1, V 2. It is convenient to
de�ne the following two variables.

bp � pH � �1 + ! � !
�

�
(pH � pL) and ep � pH + 1� 2�

2�
(pH � pL) .

Lemma 6 (bV and V 1, V 2)
(a) bV ? V 1 , R 7 R0bp .
(b) bp > p� , � < 1

2
.

(c) bp 7 pH , � ? 1
2
!L�!H
!L� 1

2
!H
.

(d) Given � < 1
2
and R < R0

pH
, c2 > A2 , 2V 2 < bV , R0ep < R.

Proof.

(a) bV < V 1 , �pH�pL
R!H

<
pH+(!��1)(pH�p�)�

R0
R

R
(2�!
� )

, R0
R
< pH +

�
!
�
� 1
�
(1� !) (pH � pL) �

�
(2�!
� )

!H
(pH � pL) = pH +

��
!
�
� 1
�
(1� !)� !

�
2� !

�

�	
(pH � pL) = bp.

(b) From p� = pH � (1� !) (pH � pL), bp � p� = �(1� !)� �1 + ! � !
�

�	
(pH � pL) =�

1
�
� 2
�
! (pH � pL). Therefore, bp > p� , � < 1

2
.

(c) 1 + ! � !
�
=

�
2!L�!H
!L�!H

�1
�+

!H
!L�!H

> 0, � > 1
2
!L�!H
!L� 1

2
!H
.

(d) R < R0
pH
implies V 2 > 0. Therefore, c2 = G2 (0) > A2 = G2

�
V 2
�
, 2V 2 < bV .

The last inequality can be written as 2�
1�2�

�
R0
R
� pH

�
< pH � pL, which is equivalent to

R0
R
< pH +

1�2�
2�
(pH � pL) = ep. �
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Given Lemma 6, we assume the following for �.

Assumption 2 1
2
!L�!H
!L� 1

2
!H
< � < 1

2
.

Assumption 2 states that H-banks are not the majority and they are not too di¤erent

from L-banks. Because 1
2
!L�!H
!L� 1

2
!H
> 1

2
!L�2!H
!L�!H , Assumption 2 is su¢ cient for a2 < 0 < a1

and p� < bp < pH < ep.1
Now we are ready to characterize the constrained Q�k-equilibrium, k 2 f1; 2g. For a

decreasing part of Gk (V ), we de�ne the inverse function G�1k (A). The relevant domain for

G1 (V ) is V 2
hbV ; V 1i for R > R0bp , and that for G2 (V ) is V � max�0; V 2	 for R � R0

pL
.

Proposition 3 (constrained equilibrium)

Assume � 2
�
1
2
!L�!H
!L� 1

2
!H
; 1
2

�
so that a2 < 0 < a1 and bp < pH < ep.

(a) For R > R0
pL
, bV < V �2 < V �1 < V 1 holds. A constrained Q�1-equilibrium with positive

V � is robust if A 2 [A1; A�). It satis�es V � = G�11 (A) 2 (V �1 ; V 1] and Q�1 (V �) < 1.

(b) For R0bp <R � R0
pL
, max f0; V �1 g � V �2 � bV < V 1 holds. A constrained Q�k-equilibrium,

k 2 f1; 2g, with positive V � is robust if A 2 [A1; A�). It satis�es

V � = G�12 (A) 2
�
V �2 ; bV i and Q�2 (V �) < 1 for A 2 [A2; A�),

V � = G�11 (A) 2
�bV ; V 1� and Q�1 (V �) < 1 for A 2 [A1; A2).

(c) For R0
pH
<R � R0bp , V �1 < 0 < V �2 < V 1 � bV holds. A constrained Q�2-equilibrium with

positive V � is robust if A 2 [A2; A�). It satis�es V � = G�12 (A) 2
�
V �2 ;

bV i and Q�2 (V �) < 1.
(d) For R0ep <R � R0

pH
, V �1 < V

�
2 � 0 � V 2 < bV < 2V 2 and V 1 < bV holds. A constrained

Q�2-equilibrium with positive V � is robust if A 2 [A2; c2). It satis�es V � = G�12 (A) 2�
G�12 (c2) ; bV i and Q�2 (V �) < 1. For A � c2, a robust constrained equilibrium exists but has

V � = 0.

1Alternatively, assuming � 2
�
1
2
!L�2!H
!L�!H ;

1
2
!L�!H
!L� 1

2!H

�
implies a2 < 0 < a1 and p� < pH < bp. Proposition

3 needs only a minor adjustment.
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(e) For R � R0ep , V �1 < V �2 < 0 < bV � 2V 2 holds. A robust constrained Q�k-equilibrium,
k 2 f1; 2g, with positive V � does not exist. For A � c2, a robust constrained equilibrium

exists but has V � = 0.

(f) In any constrained Q�k-equilibrium, k 2 f1; 2g, with positive V �, V � decreases in A

and Q�k (V
�) < 1 increases in A.

(g) For case (a), Q�1 (V
�) > 0 and V � < A for all A 2 [A1; A�) if and only if R 2�

R0
pL
; R0

(1�!)
�
!L
!H

pH�pL
�
�
. For R � R0

(1�!)
�
!L
!H

pH�pL
� , a constrained Q�1-equilibrium with V � =

G�11 (A) 2
�
V �1 ;

p�


R

�
and Q�1 2 (0; 1) exists if and only if A 2

�
G1

�
p�


R

�
; A�
�
.

Proof.

(a)-(f) These follow from properties of bV , V �1 , V �2 , V 1, V 2, G1 (V ), G2 (V ), Q�1 (V ) and
Q�2 (V ).

(g) p�


R
is a unique solution to Q�1 (V ) = 0 and also a smaller solution to V = G1 (V ). It is

straightforward to show that p�


R
� V 1 , R � R0

(1�!)
�
!L
!H

pH�pL
� and that (1� !)� !L

!H
pH � pL

�
<

pL under Assumption 2. �

Lemma 7 (V � < A)

(a) V �1 < A
� ( 1

2
!L�2!H
!L�!H � �.

(b) V 1 < A1 for R 2
�
R0bp ; R0

(1�!)
�
!L
!H

pH�pL
�
�
. G�11 (A) < A , A > G1

�
p�

R


�
for

R � R0

(1�!)
�
!L
!H

pH�pL
� .

(c) bV < A2 ( 1
2
< pH .

Proof.

(a) V �1 � A� ,
p��R0

R



� pH� 1

2
R0
R

!H
, !H




�
p� � R0

R

�
� pH � 1

2
R0
R
,
�
1
2
� �

!

�
R0
R
� pH � �

!
p�.

The right-hand side is positive because pH � �
!
p� = (1� �) pH � �

!
(1� !) pL = (1� �) pH �

� (1��)!H
�!L

pL = (1� �)
�
pH � !H

!L
pL

�
. The left-hand side is non-positive if and only if 1

2
�

�
!
= �!L+(1��)!H

!L
= �!L�!H

!L
+ !H

!L
, � �

1
2
�!H
!L

!L�!H
!L

= 1
2
!L�2!H
!L�!H .

(b) This follows from the proof of Proposition 3(g).
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(c) bV < A2 , 1 < a2bV + b2+ c2bV = R
R0

�
2��1
2�
(pH � pL)�

�
pH � R0

R

�
+ 1

2�

pH
1�pH
pH�pL

�
. This is

equivalent to (pH � pL)2 < pH
1�pH . The left hand side is no greater than one. The right-hand

side is greater than one if 1
2
< pH . �

Lemma 7 implies that robust Q�k-equilibrium with V �Q�k 2 (0; V �], k 2 f1; 2g, con-

strained or not, satis�es V � < A under Assumption 1 and Assumption 2 .

Lemma 8 For any A � A� � pH� 1
2
R0
R

R!H
, an unconstrained Q�k-equilibrium, k 2 f1; 2g,

satis�es A (Q�k) =
1
R

1
1�pH and A

�
B
R0
Q�k

�
= B

R0
1
R

1
1�pH +

�
1� B

R0

�
V �k such that A� <

A (Q�k) < A
�
B
R0
Q�k

�
.

Proof. Because Q�k = 1, A (Q
�
k) =

1
R

1
1�pH > A

� trivially holds. Also, A
�
B
R0
Q�k

�
=

V �k +
B
R0
kLB, where kLB = 1

R
1

1�pH � V
�
k . Therefore, A

� < A
�
B
R0
Q�k

�
, pH� 1

2
R0
R

R!H
< V �k +

B
R0
kLB , 1

R
1

1�pH � V
�
k � B

R0
kLB < R0

2R2!H
,
�
1� B

R0

�
kLB < R0

2R2!H
. Because 1� B

R0
< 0,

it su¢ ces to show kLB � 0.

For k = 1, kLB = 1
R

1
1�pH � V

�
1 =

1
R

1
1�pH �

p��R0
R

R

. This is positive if 


1�pH > p
� � R0

R
.

Using 
 = !H!L
�!L+(1��)!H = (1�pH)pH!L

�!L+(1��)!H ,



1�pH > p� � R0
R
, pH!L

�!L+(1��)!H > p� � R0
R
,

pH!L

p��R0
R

> � (!L � !H) + !H ,
pH

p��R0
R

!L�!H

!L�!H > �. The left hand side is greater than one for

R � R0
pL
> R0

p� .

For k = 2, kLB = 1
R

1
1�pH � V

�
2 =

1
R

1
1�pH � �

pH�
R0
R

R!H
. This is positive because pH

pH�
R0
R

> �

for R 2
�
R0
pH
; R0
pL

�
.

�

Lemma 8 implies that the unconstrained Q�k-equilibrium, k 2 f1; 2g, with Q�k = 1 is in

fact Type I-robust for A > A
�
B
R0

�
= 1

R
1

1�pH +
�
B
R0
� 1
�
kLB, while it is Type II robust

for A 2
h
A�; A

�
B
R0

�i
. Also, it is not robust for A < A� because borrowing XLB (Q�k) and

submitting kLB (Q�k) would give a higher payo¤ bUH > U�H (Q�k) for H-banks.

22



6 Remaining tasks

So far, we have characterized Q�k-equilibrium for k 2 f1; 2g. We need to investigate whether

Q�k-equilibrium for k 2 f3; 4g can be Type I robust, and if so, under what conditions. Finally,

we need to characterize QLBk -equilibrium for k 2 f1; 2; 3; 4g as shown below:

Buy orders

�kLB �kLB (Q)

Sell (1� �)
�
pLR�QR0
!LR2

� V
�

QLB1 -eqb QLB3 -eqb

orders � (1� �)V QLB2 -eqb QLB4 -eqb

Note that �QLB2 -eqb� can not generally be a market-clearing equilibrium as no order is

price-contingent. For the other cases, a market-clearing condition is well de�ned.
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