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Abstract

This paper studies high-dimensional forecasting and variable selection via folded-

concave penalized regressions. The penalized regression approach leads to sparse es-

timates of the regression coefficients, and allows the case where dimensionality of the

model is much larger than the sample size. The first half of the paper discusses theo-

retical aspects of the penalized regression under a time series setting. Specifically, we

show the oracle inequality with ultrahigh-dimensional time-dependent regressors. The

latter half of the paper shows the validity of the penalized regression in two motivating

empirical applications. First, we consider forecasting of quarterly U.S. GDP with high-

dimensional monthly dataset using unrestricted MIDAS framework with penalization.

Second, we examine how well the penalized regression screens a hidden portfolio from a

NYSE stock price large dataset. Both applications show that the penalized regression

provides remarkable results in terms of forecasting performance and variable selection.

Keywords: Ultrahigh-dimensional time series, Penalized regression, Oracle inequality, Macroe-

conomic forecasting, Mixed data sampling (MIDAS), Portfolio selection.

JEL classification: C13, C32, C52, C53, C55

1 Introduction

Recent advancements in macroeconomic data collection have led to an increased focus on

high-dimensional time series analysis. A more efficient and precise analysis could be realized
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if we elicit information appropriately from a large number of explanatory variables. However,

the performance varies depending on the dimensionality and which estimation method is

considered. Without appropriate dimension reduction, performance may be poor owing

to accumulated estimation losses from redundant or unimportant variables. After seminal

papers on diffusion index (DI) forecasting, such as Stock and Watson (2002), a factor model is

now a common tool for forecasting with large datasets. Specifically, Stock and Watson (2012)

showed that factor-based forecasts have a good performance in comparison with existing

forecasting methods, including autoregressive forecast, pretest methods, Bayesian model

averaging, empirical Bayes, and bagging. They concluded that the DI successfully works

to reduce the dimension of the regression and it seems difficult to outperform it without

introducing any drastic changes to a forecast model. Recent extensions of factor models

which could be applicable to forecasting include Bai and Liao (2016), Fan, Ke and Liao

(2016a), Fan, Liao and Wang (2016b), Hansen and Liao (2016), and Fan, Xue and Yao

(2017).

In addition to such factor approaches, sparse modeling is another direction to dimension

reduction and has rapidly progressed in statistics and econometrics. A sparse model is

assumed to contain only a few relevant covariates while many irrelevant ones with zero

coefficients. One of the advantages is to allow for ultrahigh dimensionality of covariates,

where the number of regressors diverges sub-exponentially. The model can be estimated by

a penalized regression, such as the Lasso by Tibshirani (1996) and Frank and Friedman (1993)

as a special case, the smoothly clipped absolute deviation (SCAD) penalized regression by

Fan and Li (2001), and regression with the minimax concave penalty (MCP) by Zhang

(2010). The unknown sparsity can be recovered by the penalized regression to pursue both

prediction efficiency and variable selection consistency. In these days, the sparse modeling

is also of great concern to macroeconometricians because it can handle large macroeconomic

dataset effectively and expected to cast as an alternative of the factor model; in particular,

see Bai and Ng (2008), De Mol, Giannone, and Reichlin (2008), Li and Chen (2014), Marsilli

(2014), and Nicholson, Matteson, and Bien (2015). It is worth mentioning here that they

mainly focused on the ℓ1-penalty (Lasso) though it may lack model selection consistency

while the SCAD and MCP can have. Moreover, to the best of our knowledge, it is hard

to find a statistical theory for these SCAD-type penalties in a time series context. With

such motivations, the paper sheds light on the validity of the penalized regression through
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comprehensive theoretical and empirical investigations that are suitable for macroeconomic

time series.

Time series analysis and macroeconomic forecasting in high-dimensional settings have

been well developed in late years. Basu and Michailidis (2015) establishes the oracle in-

equality for the lasso with weak dependence under Gaussian assumption. High dimensional

Vector autoregressions (VAR) have been explored by several authors, including Song and

Bickel (2011), Callot and Kock (2014), and Kock and Callot (2015). A Bayesian VAR in

high dimension is investigated by Banbura, Giannone and Reichlin (2010), Koop (2013) and

Gefang (2014). Kock (2016) considers adaptive lasso in not only stationary but also non-

stationary autoregressions. Davis, Zang, and Zheng (2016) proposes a two-stage approach

to estimating sparse VARs based on the partial coherence and t-test statistic together with

the BIC. For panel data models in high dimensions, Kock (2013) considers estimation of

models with random and fixed effects and establishes the oracle property. Kock and Tang

(2018) achieves the oracle inequalities and investigates uniformly valid inference for panel

data models with fixed effects. Regarding panel VAR models, Schnucker (2017) proposes

a new Lasso-type estimator and conducts forecasting as an empirical example. Koop and

Korobilis (2018) explores Bayesian panel VAR with time-varying parameters and stochastic

volatility. In terms of variable selection in predictive regressions, Ng (2013) investigates finite

sample properties of forecast values based on the BIC, AIC and Lasso, and finds the Lasso

has rather stable compared to the others. Kallestrup-Lamb, Kock, and Kristensen (2016)

uses the (adaptive) lasso in high-dimensional linear and logistic regressions to analyze the

retirement decision of workers. Another direction for forecasting can be found in Kock

and Teräsvirta (2014) and Kock and Teräsvirta (2016); they consider forecasting during an

economic crisis based on neural network models and novel three automated modeling tech-

niques. Li, Zbonakova, and Härdle (2017) combines propagation-separation approach and

SCAD-penalized regression to perform variable selection and capture parameter instability

simultaneously. Smeekes and Wijler (2018) finds through both simulation and empirical

studies that the lasso-type estimators can outperform factor approaches when there exists

a non-sphericity in the idiosyncratic component or cointegrating relation among variables.

Kim and Swanson (2018) examines similar analyses and also concludes machine learning and

shrinkage methods are useful for forecasting.

In the first half of this paper, we provide theoretical properties of the penalized regression

3



estimator with the SCAD-type penalties as well as ℓ1-penalty under suitable conditions for

macroeconometrics, from the perspective of prediction efficiency. In light of recent develop-

ment of the literature, this has not been fully addressed in the literature. We first derive

a non-asymptotic upper bound for the prediction loss called the oracle inequality that can

be enjoyed by the Lasso and SCAD-type penalties. This ensures that the forecast value is

reliable with implying optimality in the asymptotic sense. Next, we also discuss inferential

aspects known as the oracle property for the SCAD-type penalization and its limitation. This

property gives correct selection of the subset of predictors and estimation of the non-zero

coefficients as efficiently as would be possible if we knew which variables were irrelevant.

Note that this property will basically be endowed to the SCAD-type penalties rather than

the Lasso. For theoretical details on the oracle property for time series models, see Medeiros

and Mendes (2016).

In the second half, we check the empirical validity of the penalized regression in macroe-

conometrics by two applications. First, in order to observe the validity of oracle inequality,

we consider to forecast quarterly U.S. real GDP with a large number of monthly predictors

using MIDAS (MIxed DAta Sampling) regression framework originally proposed by Ghysels,

Sinko, and Valkanov (2007). Since the total number of parameters is much larger than that

of observations, this situation should be treated as an ultra-high dimensional problem. In

contrast to the original MIDAS model of Ghysels, Sinko, and Valkanov (2007), the penalized

regression enables us to forecast the quarterly GDP using a large number of monthly predic-

tors without imposing a distributed lag structure on the regression coefficients. We find that

the forecasting performance of the penalized regression is better than that of the factor-based

MIDAS (F-MIDAS) regression by Marcellino and Schumacher (2010) and is competitive with

a nowcasting model based on the state-space representation in real-time forecasting. Second,

to observe accuracy of model selection, we investigate how well the penalized regression can

screen a hidden fund manager’s portfolio from a large-dimensional NYSE stock price data

set. We construct artificial portfolios, and then confirm that the SCAD-type penalized re-

gression effectively detects the relevant stocks better than the Lasso. These two convincing

empirical applications motivate us to apply the penalized regression to macroeconomic time

series broadly.

The remainder of this paper is organized as follows. Section 2 specifies a ultrahigh-

dimensional time series regression model and the estimation scheme. A statistical validity
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of the method is explored in Section 3 by deriving the oracle inequality. A limitation of the

inferential aspects is also discussed. Section 4 illustrates how we can apply the penalized

regression to macroeconomic time series by two empirical analyses, such as forecasting and

portfolio screening. Section 5 concludes. The proofs and miscellaneous results are collected

in Appendix.

2 Regression Model

The regression model to be considered is

y = Xβ0 + u, (1)

where y = (y1, . . . , yT )
⊤ is a response vector, X = (x1, . . . ,xT )

⊤ is a covariate matrix

with xt = (xt1, . . . , xtp)
⊤, u = (u1, . . . , uT )

⊤ is an error vector, and β0 = (β⊤
0A,β

⊤
0B)

⊤ is a p-

dimensional unknown sparse parameter vector with β0A = (β0,1, . . . , β0,s)
⊤ the s-dimensional

subvector of nonzero elements and β0B = 0. We also denote jth column vector of X by

xj = (x1j , . . . , xTj)
⊤. Further, we write X = (XA,XB) corresponding to the decomposition

of the parameter vector. Throughout the paper, we assume that for each j, {xtjut}t is a

martingale difference sequence with respect to an appropriate filtration.

The objective of the paper is how we construct an efficient h-step ahead forecast of

yT+h and how we select variables consistently when dimension p is much larger than T .

More specifically, we consider an ultrahigh-dimensional case, meaning that p diverges sub-

exponentially (non-polynomially). In such cases, X may contain many irrelevant columns, so

that the sparsity assumption on β0 is appropriate. At the same time, the degree of sparsity

s may also diverge, but s < T must be satisfied. The estimation procedure should select

a relevant model as well as consistently estimate the parameter vector. The estimator β̂ is

defined as a minimizer of the objective function

QT (β) ≡ (2T )−1∥y −Xβ∥22 + ∥pλ(β)∥1 (2)

over β ∈ Rp, where pλ(β) ≡ (pλ(|β1|), . . . , pλ(|βp|))⊤ and pλ(v), for v ≥ 0, is a penalty

function indexed by a regularization parameter λ(= λT ) > 0. The penalty function pλ

takes forms such as the ℓ1-penalty (Lasso) by Tibshirani (1996), SCAD penalty by Fan

and Li (2001), and MCP by Zhang (2010). These penalties belong to a family of so-called

folded-concave penalties because of their functional forms. The statistical properties have

5



been developed for models with a deterministic covariate and i.i.d. Gaussian errors in the

literature on high-dimensional statistics. We thoroughly investigate these properties, while

relaxing the assumptions sufficiently to include many time series models.

We introduce the three penalties to be used. Let v denote a positive variable. The ℓ1-

penalty is given by pλ(v) = λv, and we then obtain p′λ(v) = λ and p′′λ(v) = 0. The SCAD

penalty is defined by

pλ(v) = λv1{v ≤ λ}+ aλv − 0.5(v2 + λ2)

a− 1
1{λ < v ≤ aλ}+ λ2(a2 − 1)

2(a− 1)
1{v > aλ}.

Its derivative is

p′λ(v) = λ

{
1(v ≤ λ) +

(aλ− v)+
(a− 1)λ

1(v > λ)

}
,

for some a > 2. Then we have p′′λ(v) = −(a− 1)−11{v ∈ (λ, aλ)}. The MCP is defined by

pλ(v) =

(
λv − v2

2a

)
1{v ≤ aλ}+ 1

2
aλ21{v > aλ}.

Its derivative is p′λ(v) = a−1(aλ−v)+ for some a ≥ 1. Thus, we have p′′λ(v) = −a−11{v < aλ}.

3 Theoretical Result

In this section, we establish an important theoretical result, the oracle inequality for time

series models. The oracle inequality gives an optimal non-asymptotic error bound for esti-

mation and prediction in the sense that the error bound is of the same order of magnitude up

to a logarithmic factor as those we would have if we a priori knew the relevant variables; see

Buhlman and van de Geer (2011). This result strongly supports the use of penalized regres-

sions in terms of forecasting accuracy, even in ultrahigh-dimensional settings. The existing

researches have shown the oracle inequality under i.i.d. Gaussian errors and deterministic

covariates, but in the paper we extend the result to apply to a certain class of time series

models.

Assumption 1. Penalty function pλ(·) is characterized as follows:

(a) pλ(v) is concave in v ∈ [0,∞) with pλ(0) = 0;

(b) pλ(v) is nondecreasingin v ∈ [0,∞);

(c) pλ(v) has a continuous derivative p′λ(v) for v ∈ (0,∞) with p′λ(0+) = λ.
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Assumption 1 determines a family of folded-concave penalties that bridges ℓ0- and ℓ1-

penalties. The SCAD and MCP are included in this family. The ℓ1-penalty also satisfies this

as the boundary of this class.

We define the gradient vector and Hessian matrix of (2T )−1∥y − Xβ∥22 as GT (β) ≡

−X⊤(y − Xβ)/T and HT ≡ X⊤X/T , respectively. Denoting G0T ≡ GT (β0), we may

write

G0T = − 1

T

X⊤
Au

X⊤
Bu

 ≡

G0AT

G0BT

 ,

HT =
1

T

X⊤
AXA X⊤

AXB

X⊤
BXA X⊤

BXB

 ≡

HAAT HABT

HBAT HBBT

 .

3.1 Oracle Inequality

We derive optimal non-asymptotic error bounds for estimation and prediction called the

oracle inequality. In the literature, Ch. 6 of Buhlman and van de Geer (2011) presented

a complete guide for the inequality using the ℓ1-penalty with fixed predictors and i.i.d.

normal errors. We extend the result in two ways. First, the inequality holds for the general

model (1). Second, we prove that the upper bounds for the errors under ℓ1- and the other

folded-concave penalizations characterized by Assumption 1 are the same up to a constant

factor. This indicates that the forecasting error bounds decay with the same asymptotic

rate, irrespective of the folded-concave penalty used. We first derive the bounds under two

high-level assumptions in Section 3.1.1. We next consider the conditions under which the

two high-level assumptions are actually verified in a reasonable time series setting in Section

3.1.2.

3.1.1 Generl result from the literature

First we review a general result known in the existing literature. We start with the following

high-level assumptions:

Assumption 2. There are a positive sequence λ = λpT and a positive constant c1 such that

Ec
1, the complement of the event E1 = {∥G0T ∥∞ ≤ λ/2}, satisfies P (Ec

1) = O(p−c1).

Assumption 3. For V = {v ∈ Rp : ∥vB∥1 ≤ 3∥vA∥1}, there are positive constants c2 and

γ such that Ec
2, the complement of the event E2 =

{
minv∈V T

−1∥Xv∥22/∥v∥22 ≥ γ
}
, satisfies
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P (Ec
2) = O(p−c2).

These two assumptions fully control the randomness of the regression model, irrespective

of the dependence structure and tail behaviors. Assumption 2 requires that the gradient

vector G0T to behave less fluctuate and converge to zero with an appropriate rate determined

by λ. Assumption 3 is a stochastic version of the restricted strong convexity studied by

Negahban, Ravikumar, Wainwright, and Yu (2012). This postulates that the minimum

eigenvalue of sub-matrices of Hessian matrix HT should not be too small and bounded by

γ from below.

Under the assumptions listed above, we can derive the following theorem:

Theorem 1 (Oracle inequality). Let Assumptions 1–3 hold. Then, for any minimizer β̂ of

QT (β), the following inequalities hold simultaneously with probability at least 1−O(p−c1)−

O(p−c2):

(a) (Estimation error in ℓ2-norm) ∥β̂ − β0∥2 ≤ 12s1/2λ/γ;

(b) (Estimation error in ℓ1-norm) ∥β̂ − β0∥1 ≤ 48sλ/γ;

(c) (Prediction loss) T−1/2∥X(β̂ − β0)∥2 ≤ 144s1/2λ/γ1/2.

Theorem 1 provides non-asymptotic error bounds for any combination of p, T , and s.

Note that the results have richer information than the conventional asymptotic results. First,

the asymptotic results are implied by the non-asymptotic results. In fact, if γ is assumed to

be fixed, the error bounds (a) and (b) converge to zero as long as λ goes to zero relatively

faster than s1/2 or s and it implies consistency of the estimator. More specifically, in a

simple setting with i.i.d. Gaussian ut and nonrandom Xt, it is known that λ should be given

by O((log p/T )1/2), leading to the explicit convergence rates O((s log p/T )1/2) for (a) and

(c), and O(s(log p/T )1/2) for (b). Second, the non-asymptotic bounds reveal how correlation

between the covariates affects the estimation and prediction accuracy. If γ becomes small,

we can observe the upper bound tends to loose. Result (c) exhibits an optimal bound for the

prediction loss in the ℓ2-norm in the sense of Buhlman and van de Geer (2011). This result

justifies using any penalty function specified by Assumption 1 when the aim is forecasting

due to the following two reasons. First, the bound in (c) means

T−1
T∑
t=1

(
x⊤
t β̂ − x⊤

t β
)2

= T−1
T∑
t=1

(ŷt − E[yt|x1,x2, . . . ,xt])
2 → 0
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with high probability, under an appropriate choice of λ. This fact implies the forecast values

converges to its conditional expectations in mean square. Second, the bound (c) gives the

best possible bound of the forecast value under ultrahigh dimensionality. Consider a simple

case such that X is deterministic, u is i.i.d. with a unit variance, and s = p < T . Then, the

squared risk of the OLS estimator β̂OLS = (X⊤X)−1X⊤y becomes

T−1E∥X(β̂OLS − β0)∥22 = T−1E[u⊤X(X⊤X)−1X⊤u] = T−1trI = s/T.

Likewise, consider the case p ≥ T > s. If we knew the true model A, we could choose the

correct s variables from X, leading to the risk s/T . On the other hand, since A is unknown

in practice, we must pay for an extra cost for not knowing A. However, we can choose λ as

O((log p/T )1/2) in the simplest case and it means the extra cost is only log p compared to

conventional (p < T ) case.

3.1.2 When does Theorem 1 hold?

Theorem 1 has established the non-asymptotic error bounds for the penalized regression

estimators and prediction error under general but high-level assumptions. In applications,

Assumptions 2 and 3 should be verified for each model we attempt to employ. Here we

consider a specific time series model. We first introduce two classes of random variables.

Definition 1. A random variable X ∈ R is said to be sub-Gaussian with variance proxy α2

if E[X] = 0 and its moment generating function satisfies E[exp(sX)] ≤ exp(α2s2/2) for all

s ∈ R. In this case, we write X ∼ subG(α2).

Definition 2. A random variable Y ∈ R is said to be sub-exponential with parameter γ

if E[Y ] = 0 and its moment generating function satisfies E[exp(sY )] ≤ exp(γ2s2/2) for all

|s| ≤ b−1. In this case, we write Y ∼ subE(γ, b). Furthermore, we denote subE(γ) when

b = γ.

Definition 1 forms a family of random variables whose tails decay at least as fast as

the Gaussian tail. More specifically, X ∼ subG(α2) has the tail probability P (|X| > x) ≤

2 exp{−x2/(2α2)}. Note that α2 is not the variance of X ∼ subG(α2). In fact, it is known

that E[X2] ≤ 4α2, so that the variance can be larger than α2. Similarly, for Y ∼ subE(γ, b),

we have the tail probability P (|Y | > y) ≤ 2 exp{−y2/(2γ2)} for all y ∈ [0, γ2/b]. An

important fact is that the product of two independent subG random variables becomes subE;
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see Lemma 1 in Appendix for the details. Based on this property, the proofs of propositions

below will go through by using Bernstein’s inequality for subE random variables.

In order to specify the processes of X and u, we assume the same structure as Ahn and

Horenstein (2013); the covariate X and the error u are respectively given by

X = R1/2ZΣ1/2, u = S1/2eτ, (3)

where R1/2 = (rst) ∈ RT×T , S1/2 = (sst) ∈ RT×T , Σ1/2 = (σij) ∈ Rp×p, and τ > 0 are

deterministic and Z = (zti) ∈ RT×p and e = (et) ∈ RT are composed of random variables.

More specifically, they are characterized by the following assumption:

Assumption 4. The following conditions hold:

(a) zti, et ∼ i.i.d. subG(α2) for some positive constant α;

(b) R, S, and Σ are symmetric and positive definite non-random matrices; the minimum

and maximum eigenvalues of which are all bounded from below and above by positive

constants cmin and cmax, respectively;

(c) R1/2 and S1/2 are lower triangular matrices such that rtt = stt = 1 and

max
t∈{1,...,T}

∥r·t∥1 + max
s∈{1,...,T}

∥rs·∥2 + max
s∈{1,...,T}

∥ss·∥2 = O(1).

Moreover, Σ1/2 is a positive definite matrix satisfying maxj∈{1,...,p} ∥σ·j∥2 = O(1).

Matrices in condition (c) are defined based on the Cholesky decomposition and Spectral

decomposition under condition (b). Model (3) with Assumption 4 covers a wide range of

time series processes with cross-sectional dependences. A simple example of R1/2 and Σ1/2 is

given by setting rt,t−1 = θr and σi,i−1 = φσ for some constants θr and φσ satisfying |θr| < 1

and |φσ| < ∞ with other entries all zero. Obviously, this formulation satisfies condition

(c) with reducing model (3) to an MA(1) process. Other weak stationary processes with

cross-sectional dependences can be expressed in a similar manner.

Proposition 1. Let Assumption 4 hold with λ = c0(log p/T )
1/2, with choosing

c0 = 8τeα2 max
j∈{1,...,p}

∥σ·j∥2 max
t∈{1,...,T}

∥r·t∥1 max
s∈{1,...,T}

∥ss·∥2(2 + 2ν)1/2

for ν > 0 arbitrary but fixed constant. Then, Assumption 2 is satisfied with P (Ec
1) = 2p−ν .
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Proposition 2. Let Assumption 4 hold and assume s(log p/T )1/2 = o(1), with choosing

γ = c2min − 16γ0s(log p/T )
1/2, where

γ0 = 32α2 max
j∈{1,...,p}

∥σ·j∥2 max
t∈{1,...,T}

∥r·t∥1 max
s∈{1,...,T}

∥rs·∥2(4 + 2ν)1/2

for ν > 0 arbitrary but fixed constant. Then, Assumption 3 is satisfied with P (Ec
2) ≤ 4p−ν .

Combining Propositions 1 and 2 leads to the non-asymptotic bounds in the time series

setting specified by Assumption 4. Note that c0+ γ0 = O(1) by Assumption 4(c). Thus, the

rate of convergence is completely determined by λ and s.

Corollary 1. Let Assumptions 1 and 4 hold with the constants being the same as in Propo-

sitions 1 and 2. Then, for any minimizer β̂ of QT (β), results (a)–(c) of Theorem 1 hold

with probability at least 1− 6p−ν . In addition, if we suppose log p = O(T δ) and s = O(T δ0)

for constants δ, δ0 ∈ (0, 1) such that δ + 2δ0 < 1, results (a)–(c) imply consistency.

The latter statement in Corollary 1 is easily verified since sλ = o(1) and condition

s(log p/T )1/2 = o(1) in Proposition 2 are equivalent to condition δ+2δ0 < 1 in the corollary,

the region of which is included in the region implied by s1/2λ = o(1). Under the condition, it

turns out that the rate of convergence is the same as the conventional rate, O
(
(s log p/T )1/2

)
,

obtained with i.i.d. normal errors and fixed covariates. From the obtained results so far, we

can anticipate that the rate of convergence will change when mitigating the summability

conditions in Assumption 4(c). If some norms diverge (slowly) in Assumption 4(c), the

resulting rate will become slower. Another factor is a fatter tail behavior than the assumed

subG random variables. For more information on effects of heavy-tailedness, see Section C

in Appendix.

3.2 Discussion: Inference Based on Penalized Regressions

We have observed that the penalized regressions can achieve the oracle inequality under

reasonable assumptions which indicate efficient prediction. At the same time, we want to

know inferential aspects; that is, we are interested in properties of model selection and

asymptotic distribution of the Lasso and SCAD-type penalized regressions. It is well known

from the literature that the Lasso has limitation in capacity of selecting the underlying true

submodel while the SCAD-type penalized regression have possibility to do so. In fact, the

SCAD-type penalization has a chance to enjoy the oracle property:
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Property 1 (Oracle property). Under some assumptions, there exists a local minimizer

β̂ = (β̂
⊤
A, β̂

⊤
B)

⊤ of QT (β) such that

(a) (Sparsity) β̂B = 0 with probability approaching one;

(b) (Rate of convergence) ∥β̂A − β0A∥2 = Op((s/T )
1/2);

(c) (Asymptotic normality) T 1/2b⊤I
−1/2
0AA J⊤

0AA(β̂A − β0A) →d N(0, 1) for any b ∈ Rs sat-

isfying ∥b∥22 = 1, where I0AA = TE[G0ATG
⊤
0AT ] and J0AA = E[HAAT ].

Results (a) and (b) means that the SCAD-type penalized regression has the variable

selection consistency. Result (c) guarantees that the non-zero coefficients can be efficiently

estimated as if A were known in advance; see Fan and Lv (2011) for a complete guide in an

i.i.d. setting.

The point is that this property holds only in a very ideal case. Unfortunately, some of

the required assumptions are hardly satisfied in many high-dimensional macroeconometric

applications. For example, a condition suffer from collinearity caused by strong correlations

among many macroeconomic variables. Actually, under strong collinearity, the model selec-

tion consistency tends to be violated; see Section D in Appendix. In addition, a more serious

problem arises due to the so-called beta-min condition:

min
j∈A

|β0,j | ≫ λ = O
(
(log p/T )1/2

)
.

This is necessary for the oracle property to distinguish the nonzero coefficient of relevant

variables from zero, with ruling out variables that have small magnitude of coefficients.

However, in a series of articles by Leeb and Pötscher, they have claimed that under the

condition inference lacks uniform validity over sequences of models that include even minor

deviations from conditions implying perfect model selection; see Section 6 of Chernozhukov,

Hansen and Spindler (2015). As a result, asymptotic normal approximations in (c) may

become very poor; see e.g., Leeb and Potscher (2008) and Potscher and Leeb (2009). To avoid

this problem, a number of methods have been proposed recently, such as the double selection

by Belloni, Chernozhukov and Hansen (2014a), partialling out by Belloni, Chernozhukov and

Wang (2014b), and de-biasing by Javanmard and Montanari (2014) and Zhang and Zhang

(2014). For a comprehensive list of references, see Chernozhukov, Hansen and Spindler

(2015).
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4 Empirical Examples

In this section, we provide two empirical examples that illustrate how well the penalized

regression works in macroeconometric analyses. The first example is motivated by the or-

acle inequality that justifies to employ the penalized regression for forecasting. We focus

on macroeconomic forecasting with mixed-frequency data. The second example considers

variable selection the SCAD-type penalized estimator is expected to have by investigating

hidden portfolio screening.

4.1 Forecasting Quarterly U.S. GDP with a Large Number of Predictors

4.1.1 Penalized MIDAS regression

In this section, we illustrate how to apply the penalized regression model to macroeconomic

time series using the MIDAS (MIxed DAta Sampling) regression framework. The MIDAS

regression model was originally proposed by Ghysels, Sinko, and Valkanov (2007) and it is

now one of the standard tools for macroeconomic forecasting with mixed-frequency data, as

well as the now-casting model based on the state-space representation: see e.g., Giannone,

Reichlin, and Small (2008) and Banbura and Modugno (2014). The original (or basic)

MIDAS regression model has an advantage of describing a forecasting model with a large

number of lags of the predictors in a simple and parsimonious way by employing a distributed

lag structure with a few hyperparameters. However, the distributed lag structure seems quite

restrictive, and more importantly, the original MIDAS is not suitable when the number of

predictors is very large. In fact, the original MIDAS can just reduce the dimensionality

originated from lags, but not the dimensionality of predictors itself. For example, consider

the original MIDAS regression model including a constant term with N macroeconomic time

series, K (K ≪ N) hyperparameters, and ℓ lags. In this case, the total number of parameters

to be estimated is NK+1, which is reduced from NK(ℓ+1)+1. Thus, the original MIDAS

only successfully reduces the total number of parameters regarding the lags, but it invokes

a serious efficiency loss or even it makes the model inestimable once N is getting very large.

On the other hand, the penalized regression scheme enables us to directly estimate the high-

dimensional MIDAS regression without imposing any distributed lag structures, since the

coefficients of irrelevant predictors are automatically estimated to be zero.

Here we propose the penalized MIDAS regression model that applies the penalized re-
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gression framework to the mixed-frequency data. This can reduce the dimensionality caused

from both N and ℓ. Let {yt,x(m)
t/m} be the MIDAS process in line with Andreou, Ghy-

sels, and Kourtellos (2010), where the scalar yt is the low-frequency variable observed at

t = 1, . . . , T , and the (N + 1)-dimensional vector x
(m)
t/m =

(
1, x

(m)
1,t/m, . . . , x

(m)
N,t/m

)⊤
is a set

of higher-frequency variables observed m times between t and t− 1. For example, m = 3 if

we forecast a quarterly variable with monthly predictors. We consider the h-quarter-ahead

mixed-frequency forecasting regression model with ℓ lags,

yt = x⊤
t−h β0 + ut, t = 1, . . . , T, (4)

where xt−h =
(
1,x

(m)⊤
1,t−h,ℓ, . . . ,x

(m)⊤
N,t−h,ℓ

)⊤
with

x
(m)⊤
k,t−h,ℓ =

(
x
(m)
k,t−h, x

(m)
k,t−h−1/m, . . . , x

(m)
k,t−h−ℓ/m

)
for k = 1, 2, . . . , N , β0 = (β0,0, β0,1, . . . , β0,N(ℓ+1))

⊤ is a sparse parameter vector and ut is an

error term. Here the case h < 1 (h = 0, 1/m, 2/m, . . . , (m−1)/m) corresponds to nowcast; we

forecast a low-frequency variable with the “latest” high-frequency variables released between

t−1 and t. For instance, if we consider a quarterly/monthly (m = 3) case, h = 0 (1/3) means

that we forecast a quarterly variable in 2015Q2 with monthly data in June (May) 2015 or

later. Note that model (4) has the same structure as (1) with p := N(ℓ+1)+1 but it differs

from the original MIDAS in the sense that our model does not employ the distributed lag

structure on xt−h, while the original MIDAS uses xt−h(θ) =
(
1, x

(m)
1,t−h(θ1), . . . , x

(m)
N,t−h(θN )

)⊤
instead of xt−h such that x

(m)
k,t (θk) =

∑ℓ
j=1wj,k(θk)L

j/mx
(m)
k,t/m for k = 1, 2, . . . , N, where

wj,k(θk) ∈ (0, 1) is a weight term that satisfies
∑ℓ

j=1wj,k(θk) = 1.

Note that the penalized MIDAS regression model (4) stands on the sparsity assumption

on forecasting regression coefficients. Although the assumption seems restrictive, it is rather

plausible in a macroeconomic forecasting point of view because it is natural to consider that

there is a small set of key predictors that contain rich information with non-zero coeffi-

cients while there are lots of redundant predictors with zero coefficients when we forecast

macroeconomic time series. Bai and Ng (2008) shared the same spirit and they call the key

predictors as targeted predictors. Here we may also consider the broader situation where

the redundant predictors would have very low but non-zero forecasting power. Since the

penalized regression makes their coefficient estimates zero even in this case, we can inter-

pret the sparsity assumption leads to an approximation of a true forecasting model. Note

14



further that Marsilli (2014) proposed a similar method to our penalized MIDAS regression,

but his model completely differs from ours; he employed the original MIDAS parsimonious

parameterization of distributed lags.

4.1.2 Data

U.S. quarterly real GDP growth is taken from the FRED database. The sample period is from

1959Q4 to 2017Q3. We retrieve 117 U.S. monthly macroeconomic time series (N = 117)

from the FRED–MD database and the series are appropriately detrended according to a

guideline given in McCracken and Ng (2015). Note that the FRED–MD database originally

contains a total of 128 series, but we remove 11 series because the CBOE S&P 100 Volatility

Index (VXOCLSx), Consumer sentiment index (UMCSENTx), Trade weighted U.S. dollar

index of major currencies (TWEXMMTH), New orders for nondefense capital goods (AN-

DENOx), New orders for consumer goods (ACOGNO), and New private housing permits

(PERMIT, PERMITNE, PERMITMW, PERMITS, PERMITW) have no observations from

1959. Reserves of depository institutions nonborrowed (NONBORRES) is not used as well

since our preliminary inspection found that it contained extreme changes in February 2008,

which would contaminate our analysis. The sample period of the detrended monthly series

is from April 1959 (1959:3) to September 2017 (2017:9).

4.1.3 Forecasting strategy

We evaluate the out-of-sample forecasting performance by mean squared forecast errors

(MSFE) in the evaluation period from 2000Q1 to 2017Q3. The parameter estimates are

obtained from each estimation period; the initial period is 1959Q4–1999Q4 and the next

one extends the end point to 2000Q1 with the starting point 1959Q4 being fixed. For

example, the initial forecast error in 2000Q1 is calculated using the estimates from the

initial estimation period 1959Q4–1999Q4, and the second forecast error in 2000Q2 uses the

estimates from the second estimation period 1959Q4–2000Q1. We suppose that the forecast

regression consists of eight lags (ℓ = 8), so that the total number of parameters for the

forecasting regression to be estimated is N(ℓ + 1) + 1 = 1054, including a constant term.

The penalized MIDAS regression is expected to be robust to the choice of ℓ, as long as

we choose ℓ to be moderately large, because the penalized regression conducts dimension

reduction as well as parameter estimation. To investigate the forecasting performance of the
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penalized MIDAS regression model with a variety of horizons, we examine cases where h =

0, 1/3, 2/3, 1, 4/3, 5/3, 2 in the same manner as Clements and Galvao (2008) and Marcellino

and Schumacher (2010). The cases h = 0, 1/3, and 2/3 correspond to nowcasting in the sense

that we forecast contemporaneous or very short-forecast-horizon quarterly GDP growth using

monthly series before the official announcement of the GDP, while the case h = 2 is a forecast

with a relatively long horizon. The sample size of the estimation period T gradually increases

and varies depending on h; for example, T ranges from 161 to 231 if h = 0, and from 159

to 229 if h = 2. Finally, we need to predetermine the values of tuning parameter a and

regularization parameter λ. Following the guidelines by Breheny and Huang (2011) with our

preliminary inspection of the entire samples, we set a = 12 for the SCAD and MCP, although

the performance could be improved by a more careful choice. The value of λ is selected by

5-fold cross-validation. The validity of the CV selection was confirmed by Chetverikov, Liao,

Chernozhukov (2017) theoretically and Uematsu and Tanaka (2016) in simulation. All the

computations are conducted using R 3.4.4 and we use ncvreg package of Breheny and Huang

(2011) for the penalized regression and midasr for constructing MIDAS regressors.

4.1.4 Forecast methods

We consider the following three evaluation periods: (i) Overall (2000Q1–2017Q3), (ii) 1st

subsample (2000Q1–2007Q4), and (iii) 2nd subsample (2008Q1–2017Q3) to avoid the period

the unprecedented turmoil of the U.S. economy stemming from the subprime mortgage crisis

and the ensuing collapse of Lehman Brothers in 2008 that would introduce parameter insta-

bility and distort the forecast evaluation. As a result, the forecast performance is evaluated

in complete data from a total of 70 (overall), 32 (1st subsample) and 38 (2nd subsample)

squared forecast errors, respectively. Due to limitation in the number of observations, we

consider only the single economic shock. It would be better to consider other shocks, such

as the Black Monday in 1987Q3 and the collapse dot-com bubble around 2001, if we had

enough samples. The competitors are a naive AR(4) forecast, the factor MIDAS proposed

by Marcellino and Schumacher (2010), and the OLS post-Lasso proposed by Belloni and

Chernozhukov (2013).

The factor MIDAS is expected to be one of the strong competitors since the factor-

based forecast performs well in forecasting real variables; see e.g., Stock and Watson (2002),

Stock and Watson (2012), De Mol, Giannone, and Reichlin (2008). The factor MIDAS

16



considered here is based on the basic MIDAS structure with the exponential Almon lag of

two hyperparameters. This is implemented by midasr package in R. The number of factors

is assumed to be seven (r = 7) based on the information criterion ICp2 by Bai and Ng (2002).

Although we can consider the unrestricted factor MIDAS as in Marcellino and Schumacher

(2010), which is free from the distributed lag structure, we do not because of its intractability

caused by high dimensionality.

The OLS post-Lasso is expected to perform at least as well as the Lasso and to have

better performance in some cases. Roughly speaking, the OLS post-Lasso implements the

Lasso as a first screening for effective predictors and then run the OLS only with the selected

predictors. More precisely, it consists of the following five steps:

1. Let I1, . . . , I5 be 5 subsamples for the 5-fold CV and {λ1, . . . , λM} be a set of potential

regularization parameters. We run the Lasso with each λ ∈ {λ1, . . . , λM} in kth

subsample Ik for k = 1, . . . , 5, and get the active sets Â1(λ), . . . , Â5(λ).

2. Run the OLS of yt on {xj} such that j ∈ Âk(λ) in each subsample Ik and get

β̂
OLS

1 (λ), . . . , β̂
OLS

5 (λ).

3. Determine λ∗ as to satisfy

λ∗ = argmin
λ∈{λ1,...,λM}

5∑
k=1

|Ik|−1
∑
t∈Ik

yt − ∑
j∈Âk(λ)

xtj β̂
OLS
k,j (λ)

2

,

where and β̂OLS
k,j (λ) is a jth element of the OLS estimator β̂

OLS

k (λ).

4. Estimate model (4) by the Lasso with λ∗ in the whole sample ∪5
k=1Ik = {1, 2, . . . , T}

and obtain the active set Â(λ∗) = {j : β̂j(λ∗) ̸= 0}, where β̂j(λ∗) denotes jth element

of the Lasso estimate β̂ with λ∗ for j = 1, 2, . . . , N(ℓ+ 1) + 1.

5. Run the OLS only with active covariates {xj} such that j ∈ Â(λ∗), and we obtain the

OLS post-Lasso estimator.

It should be stressed that determining λ∗ in the 3rd step, the CV procedure is different

from that in the (conventional) Lasso because we need to select λ∗ so as to minimize the

sum of squared residuals (SSR) that are obtained by the OLS with screened covariates in

each k subsample. In this example we set M = 100 and potential regularization parameters
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λ1, . . . , λM are obtained by the same rule as ncvreg. Here we can also define the OLS

post-MCP and OLS post-SCAD in the same manner. We employ the OLS post-MCP and

the OLS post-SCAD as well as the OLS post-Lasso and hereafter we call them as the OLS

post-selection estimators.

4.1.5 Forecast performance

Tables 1–3 report the mean squared forecast errors (MSFE) of the penalized MIDAS re-

gression with the SCAD, MCP, Lasso, OLS post-selection estimators, factor MIDAS, and

naive AR(4) in the overall sample, 1st subsample, and 2nd subsample, respectively. The

median forecast errors are also shown in parentheses as a robust measure for contamination

by outliers. In the tables, the lower table “with yt−1” provides the results when the lagged-

dependent variable yt−1 is included as a regressor in (4) in addition to xt−h, whereas the

upper table “without yt−1” gives the results without the lagged-dependent variable. All the

values are standardized by the naive AR(4) forecast. First we see the results on the overall

sample. In the nowcasting (0 ≤ h < 1) cases, Table 1 shows that every method is much

better than the naive AR(4) forecast (i.e., the values are less than one) with a few exceptions,

but that the MCP, SCAD, and Lasso outperform the factor MIDAS and OLS post-selection

estimators in the overall sample as a whole, in terms of both the mean and median squared

forecast errors. Inclusion of the lagged dependent variable does not essentially affect the

forecasting performance of the MCP, SCAD, Lasso, and OLS post-selection estimators, but

improves the MSFEs of the factor MIDAS. Here we should mention that the MSFE of the

factor MIDAS when h = 1/3 is much worse than the other methods. It is mainly due to

outliers of forecast values around the subprime mortgage crisis. The factor MIDAS is not

necessarily much worse than the other estimators for the other h’s although the forecasts of

the Factor MIDAS tend to be volatile. We find the post-selection estimators work well in

terms of MSFE in some cases (h = 2/3 and h = 1), however, they do not necessarily work

better than the MCP, SCAD, and Lasso both in mean and median measures. Let us see

the forecast performance when h ≥ 1. The table shows that all the forecasts have similar

forecast performances; they perform well when h = 1, however, when h > 1, they are all

beaten by the AR(4) forecast. The results are not surprising because previous studies, such

as Clements and Galvao (2008) and Marcellino and Schumacher (2010), reported the same

tendency. Here we also find the OLS post-SCAD behaves like the OLS post-Lasso. It is be-
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cause the OLS post-SCAD has almost the same active set Â(λ∗) in the screening step. Next,

we see the results for the subsamples. Tables 2 and 3 show the forecasting performances for

the first and second subsamples, respectively. As a whole, both of the results are the same as

the whole sample case; the forecasts with the MCP, SCAD, and Lasso are superior to those

with the Factor MIDAS, OLS-post-selection estimators, and naive AR in the nowcasting

cases, although they are not necessarily reliable when we consider the forecast with a long

horizon.

In consequence, our analysis shows that the forecasts with mixed frequency by the MCP,

SCAD and Lasso have good forecast performances in nowcasting though it does not seem to

be a primary tool for forecasting with relatively long horizons. At the same time, we also

find that the forecast performances of the post-inference estimators are not so convincing

contrary to our expectation. The reason may come from strong time dependences in covari-

ates. Section E in Appendix examine performances of the MCP, SCAD, Lasso, and OLS

post-Lasso with the simulated data, where the covariates are moderately cross-sectionally

dependent but time-independent. We find from the simulation that the OLS post-Lasso

performs better than the other penalization methods, which supports our conjecture; see

Section E for details. Furthermore, we have seen that the penalized regression estimators

perform well in nowcasting with a complete data, so far. However, when we actually con-

duct real-time forecasting of quarterly GDP with monthly data, a complete dataset may not

be available because of possible publication lags. Thus, it happens to face an incomplete,

so-called jagged (ragged)-edge dataset that contains missing values in some latest months.

Section F in Appendix investigates the forecast performance with such jagged-edge data

and finds favorable results comparing with the state-space maximum-likelihood method; see

Section F for details.

4.2 Screening Effective Portfolio from a Large Number of Potential Securities

Recently, several studies on portfolio selection have focused on the penalized regression

as it can select stocks in a portfolio among a large number of potential stocks. Brodie,

Daubechies, Giannone, De Mol and Loris (2009) found out that the penalized regression is

useful in selecting optimal portfolio in terms of the out-of-sample performance measured by

the Sharpe ratio; Fan, Zhang, and Yu (2012) introduced gross-exposure constraints to admit

short sales in the estimation of an optimal portfolio; Carrasco and Noumon (2012) focused
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on estimating a precision matrix of returns. They noticed that the penalized regression was

quite useful to stabilize the estimation of the covariance matrix and provided better finite

sample performances than traditional methods.

To the best of our knowledge, the existing literature focused mainly on yieldability.

However, it seems interesting to examine the consistent estimation of hidden weights of the

portfolio; that is, we are curious in screening how fund managers construct their portfolio

from a large number of potential securities. Unlike the other high-dimensional estimation

methods, such as the factor and the Ridge regression, the SCAD-type penalized regression

may enable us to reveal their portfolio from a large dataset of stock prices. It is because the

SCAD-type penalized regression is expected to have a chance to select variables consistency

as stated in Property 1. In this section, we examine how well the penalized regression usefully

works in this direction using a large NYSE stock price dataset.

4.2.1 Portfolio construction

Suppose a fund manager faces p potential stocks, where xit is the rate of return of the ith

(i = 1, 2, . . . , p) stock at time t. Let xt = [x1t, x2t, . . . , xpt]
⊤ be the p-dimensional rates of the

return vector at t and ω0 be the p-dimensional weight vector of the portfolio that satisfies

∥ω0∥0 = s (≪ p), ι′ω0 = 1 and ∥ω0∥1 = ζw, where ζw ∈ [1,∞) and ι is a p-dimensional

vector with all the elements being one. That is, the portfolio is constructed by s stocks from

p potential stocks. We assume the fund manager constructs her portfolio as

yt = x⊤
t ω0 + ut, t = 1, . . . , T, (5)

where ut is a miscellaneous component that includes all assets in the portfolio other than

stocks, such as T-bills and corporate bonds. Further we assume that xt and ut are indepen-

dent of each other and ut ∼ i.i.d.N(0, σ2u), where σ
2
u = T−1ω⊤

0AX
⊤
AXAω0A/SNR, ω0A is a

nonzero s-dimensional subvector of ω0, XA is T × s submatrix of X that corresponds to

ω0A, and SNR = V (x⊤
t ω0)/V (ut). Although we might consider the case in which xt and ut

are dependent by extending the results of Fan and Liao (2014), this is beyond the scope of

our research, and we regard xt and ut as independent here.

The portfolio allows short sales if ζw > 1 with ζw determining a constraint on the short

sales as shown in Fan, Zhang, and Yu (2012): Let w+
0 = (ζw + 1) /2 and w−

0 = (ζw − 1) /2.

Then w+
0 and w−

0 correspond to the total proportions of long and short sales, respectively,
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since w+
0 + w−

0 = ζw = ∥ω0∥1 and w+
0 − w−

0 = 1, and w−
0 becomes larger as ζw grows while

short sales are not allowed if ζw = 1 (w−
0 = 0). We assume the fund manager holds s/2

stocks for long and s/2 stocks for short sales respectively, and she employs equal weights

among long and short sales; that is, we assume ω0i = w+
0 /(s/2) for i ∈ ω0A+, −w−

0 /(s/2)

for i ∈ ω0A−, and 0 for i ∈ ω0B, where ω0i is ith element of ω0, and ω0A+, ω0A−, and ω0B

are sets of stocks of long, short, and no sales, respectively.

4.2.2 Data and evaluation strategy

We retrieve weekly stock price data of the NYSE from Yahoo! Finance. Our dataset contains

1853 adjusted stock prices (p = 1853) with starting from the 1st week of January in 2009 to

the 4th week of April in 2016. We apply the log-difference and standardize them so that the

data are converted to rates of returns with zero means and unit variances. We investigate

the cases of s = 34 and 40 with a = 14, SNR = 10, and ζw = 10. Non-zero s stocks are

drawn randomly from p candidates with equal probabilities. Furthermore, we assume the

fund manager does not rebalance the portfolio. Hence it remain unchanged in all sample

period. Brodie et al. (2009) argued a possibility of estimating a weight vector for a portfolio

in the presence of rebalancing, but for simplicity we do not consider the case here.

The purpose of this application is to unseal the hidden stocks in which the fund manager

invested from a large number of potential stocks. We examine how well the penalized esti-

mator ω̂ can distinguish the nonzeros from zero elements of ω0 in finite samples. Then we

evaluate the finite sample performances of ω̂ to focus on SC-A = P (sgn(ω̂A) = sgn(ω0A))

and SC-B = P (sgn(ω̂B) = sgn(ω0B)); the SC-A refers to the success rate of detecting non-

zero elements of ω0 with the correct sign while the SC-B that of detecting zero elements. We

anticipate that the SCAD-type penalized regression estimator can have high SC-A and SC-B

values asymptotically thanks to the oracle property. The SC-A and SC-B are sequentially

computed for 172 evaluation periods, where the endpoint gradually grows by one with the

start point fixed; the initial evaluation period starts from the 2nd week of January 2009 and

ends in 1st week of December 2010 (T = 209). The 2nd evaluation period runs from the

2nd week of January 2009 to the 2nd week of December 2010 (T = 210), and so on. The

terminal evaluation period is from the 2nd week of January 2009 to the 4th week of April

2016 (T = 381).
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4.2.3 Empirical results

Figures 1–2 and 3–4 show the SC-A and SC-B of the MCP, SCAD, and Lasso for 172

evaluation periods with s = 34 and 40, respectively. To begin with, we consider the SC-A.

At a glance, both Figures 1 and 2 reveal two characteristics of ω̂. First, the SC-A increases

toward one as T grows, irrespective of the penalties. Although the SC-A of s = 40 seems

uniformly lower than that of s = 34 for all T , this is due to the fact that many nonzero

elements require a greater search cost. Second, the SC-A of the Lasso tends to be higher

than that of the MCP and SCAD when T is relatively small, while it seems reversed when

T is large. This is consistent with the theory because the Lasso tends to have many false

positive estimates. That is, it overestimates the total number of nonzero elements since it

rarely satisfies the assumptions for model selection consistency, while the MCP and SCAD

may satisfy these assumptions. The SC-A of the Lasso is not expected to be higher than

that of the MCP and SCAD when T is large.

Next, we focus on the SC-B. Figures 3 and 4 show that SC-B of the MCP and SCAD

are successfully nearly equal to one with dominating that of the Lasso for all T . The results

are again consistent with the theory because the MCP and SCAD have the oracle property,

which means that they can generally detect true zero parameters more precisely than the

Lasso can.

In summary, our empirical results reveal that the model selection consistency of the

SCAD-type penalty works well in a large stock price dataset. This implies that the penalized

regression is effective when we want to detect the composition of fund manager’s portfolio

from large financial datasets. However, we should keep in mind that conditions for the

variable selection consistency do not necessarily hold in macroeconomic data as discussed in

Section 3.2.

5 Conclusion

We have studied macroeconomic forecasting and variable selection using a folded-concave

penalized regression with a very large number of predictors. The contributions include both

theoretical and empirical results. The first half of the paper developed the theory for a

folded-concave penalized regression in ultrahigh dimensions when the model exhibits time

series dependences. Specifically, we have proved the oracle inequality under appropriate con-
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Figure 1: SC-A when s = 34 (from T = 209

to T = 381)

Figure 2: SC-A when s = 40 (from T = 209

to T = 381)

Figure 3: SC-B when s = 34 (from T = 209

to T = 381)

Figure 4: SC-B when s = 40 (from T = 209

to T = 381)

ditions for macroeconomic time series. A limitation of the oracle property was discussed as

well. The latter half of the paper provided two empirical applications that motivated us to

use the penalized regression for a large macroeconomic dataset. The first was the forecasting

of quarterly U.S. real GDP with a large amount of monthly macroeconomic data taken from

the FRED-MD through the MIDAS regression framework; the forecasting model consisted

of more than 1000 monthly predictors including lags while the sample size was much smaller

than the total number of predictors. The forecasting performance of the penalized regression

is promising one compared to that of the factor MIDAS proposed by Marcellino and Schu-

macher (2010), the OLS post-Lasso proposed by Belloni and Chernozhukov (2013) and the

state-space (nowcasting) model of Banbura and Modugno (2014). The second application

screened a portfolio that contained about 40 stocks from more than 1800 stocks using NYSE

stock price data. The oracle property ensured the variable selection consistency, that is, the
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penalized regression with the SCAD-type penalty could detect the portfolio from the data

theoretically. In fact, we observed that the variable selection consistency worked properly

when screening the portfolio.
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Appendix

A Lemmas for the Main Proofs

Lemma 1. Assume Xi ∼ ind. subG(α2
i ) and Yi ∼ ind. subE(γi). Then, for any deterministic

sequences (ϕi) and (ψi), the following statements are true:

(a) XiXj ∼ subE(4eαiαj) for i ̸= j.

(b)
∑n

i=1 ϕiXi ∼ subG(
∑n

i=1 ϕ
2
iα

2
i ).

(c)
∑n

i=1 ψiYi ∼ subE((
∑n

i=1 ψ
2
i γ

2
i )

1/2,maxi |ψi|γi).

Proof. (a) Since Xi is subG(α2
i ), we obtain E|X|k ≤ (2α2

i )
k/2kΓ(k/2); see Rigollet and

Hütter (2017), for instance. Then we see from the dominated convergence theorem and

independence that

E exp(sXiXj) = 1 +

∞∑
k=2

skE(XiXj)
k

k!
≤ 1 +

∞∑
k=2

skE|Xi|kE|Xj |k

k!

≤ 1 +

∞∑
k=2

sk(2αiαj)
kk2Γ(k/2)2

k!
≤ 1 +

∞∑
k=2

sk(2αiαj)
kk2(k/2)k

k!

= 1 +

∞∑
k=2

sk(αiαj)
kkk+2

k!
≤ 1 +

∞∑
k=2

(2eαiαjs)
k

= 1 + (2eαiαjs)
2

∞∑
k=0

(2eαiαjs)
k,

where we have used Γ(k/2) ≤ (k/2)k/2 and kk+2 ≤ (2π)−1/2k!ekk3/2 ≤ k!(2e)k. Therefore,

for any |s| ≤ (4eαiαj)
−1, it holds that

E exp(sXiXj) ≤ 1 + 8(eαiαj)
2s2 ≤ exp((4eαiαj)

2s2/2).

This means that the product XiXj is subE(4eαiαj).

(b) By the definition of subG, we have

E exp

(
s

n∑
i=1

ϕiXi

)
=

n∏
i=1

Eexp (sϕiXi)

≤
n∏

i=1

exp
(
s2ϕ2iα

2
i /2
)
= exp

(
s2

n∑
i=1

ϕ2iα
2
i /2

)
,

which yields the result.
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(c) First note that ψiYi ∼ subE(ψiγi, |ψi|γi) because E exp(sψiYi) ≤ exp(s2ψ2
i γ

2
i /2) holds

for all |s| ≤ (|ψi|γi)−1. Thus, we can see that

E exp

(
s

n∑
i=1

ψiYi

)
=

n∏
i=1

Eexp (sψiYi)

≤
n∏

i=1

exp
(
s2ψ2

i γ
2
i /2
)
= exp

(
s2

n∑
i=1

ψ2
i γ

2
i /2

)
,

where the inequality holds for all |s| ≤ (maxi |ψi|γi)−1. This gives the result by the definition

of subE, and completes all the proofs. □

Lemma 2. Under Assumption 4, we have

T−1
T∑

u,v=1

(

T∑
t=1

rturtv)
2 + T−1

T∑
u,v=1

(

T∑
t=1

rtustv)
2 = O(1).

Proof. We prove the boundedness of the first term. We have

T−1
T∑

u,v=1

(
T∑
t=1

rturtv)
2 ≤ T−1

T∑
u,v=1

max
t

|rtu|2(
T∑
t=1

|rtv|)2

≤
T∑

u=1

max
t

|rtu|2max
v

(
T∑
t=1

|rtv|)2 = max
t

∥rt·∥22max
v

∥r·v∥21,

which is bounded for all (large) T by Assumption 4. The same result holds for the second

term under Assumption 4 as well. □

B Proofs of the Main Results

B.1 Proof of Theorem 1

Proof. For any β̂ that minimizes QT (β), we have

(2T )−1∥y −Xβ̂∥22 + ∥pλ(β̂)∥1 ≤ (2T )−1∥y −Xβ0∥22 + ∥pλ(β0)∥1.

By model (1) and Hölder’s inequality, this can be rewritten and bounded as

(2T )−1∥X(β̂ − β0)∥22 ≤ T−1u⊤X(β̂ − β0) + ∥pλ(β0)∥1 − ∥pλ(β̂)∥1

≤ ∥T−1X⊤u∥∞∥β̂ − β0∥1 + ∥pλ(β0)∥1 − ∥pλ(β̂)∥1. (1)
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The Mean value theorem, Assumption 1, and the triangle inequality give

∥pλ(β0)∥1 − ∥pλ(β̂)∥1 =
p∑

j=1

(
|pλ(β0j)| − |pλ(β̂j)|

)
=

p∑
j=1

p′λ(bj)
(
|β0j | − |β̂j |

)
≤ p′λ(0+)

p∑
j=1

∣∣∣|β0j | − |β̂j |
∣∣∣ ≤ λ∥β̂ − β0∥1, (2)

where bj is a point between |β0j | and |β̂j |. In what follows, we have only to work on event

E1 defined in Assumption 2. On the event, we have ∥T−1X⊤u∥∞ ≤ λ/2, so that (1) and (2)

entail

(2T )−1∥X(β̂ − β0)∥22 ≤ 2−1λ∥β̂ − β0∥1 + ∥pλ(β0)∥1 − ∥pλ(β̂)∥1

≤ 2−1λ∥β̂ − β0∥1 + λ∥β̂ − β0∥1

= (3/2)λ∥β̂ − β0∥1. (3)

Lemma 1 of Negahban, Ravikumar, Wainwright, and Yu (2012) yields

∥β̂B − β0B∥1 ≤ 3∥β̂A − β0A∥1. (4)

Thus, Assumption 3 gives

T−1∥X(β̂ − β0)∥22 ≥ γ∥β̂ − β0∥22. (5)

By (3)–(5) and the Cauchy–Schwarz inequality, we have

γ∥β̂ − β0∥22 ≤ 3λ∥β̂ − β0∥1

= 3λ∥β̂A − β0A∥1 + 3λ∥β̂B − β0B∥1

≤ 12λ∥β̂A − β0A∥1

≤ 12s1/2λ∥β̂A − β0A∥2

≤ 12s1/2λ∥β̂ − β0∥2.

This concludes the error bound in the ℓ2-norm

∥β̂ − β0∥2 ≤ 12s1/2λ/γ. (6)

Using (6), we can obtain the error bound in the ℓ1-norm as well. We have

∥β̂ − β0∥1 = ∥β̂A − β0A∥1 + ∥β̂B − β0B∥1
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≤ 4∥β̂A − β0A∥1 ≤ 4s1/2∥β̂A − β0A∥2 ≤ 4s1/2∥β̂ − β0∥2 ≤ 48sλ/γ. (7)

Finally, we derive the prediction error bound from (7)and (3). We obtain

T−1∥X(β̂ − β0)∥22 ≤ 3λ∥β̂ − β0∥1 ≤ 144sλ2/γ. (8)

Results (6)–(8) hold with probability at least 1−O(p−c1)−O(p−c2) by Assumptions 2 and

3. □

B.2 Proof of Proposition 1

Proof. We are interested in the probabilistic behavior of ∥G0T ∥∞ = ∥T−1X⊤u∥∞; specif-

ically we want to find a positive sequence λ = λpT and some positive constant c1 such

that

P (∥G0T ∥∞ > λ/2) = O(p−c1). (9)

We observe from the construction that∥∥∥T−1X⊤u
∥∥∥
∞

=
∥∥∥τT−1Σ1/2⊤Z⊤R1/2⊤S1/2e

∥∥∥
∞

= τ max
j

∣∣∣∣∣∣T−1
T∑

t,u=1

(
T∑

s=1

rstssu)eu

p∑
i=1

ztiσij

∣∣∣∣∣∣ .
Lemma 1 entails

z̃tj :=

p∑
i=1

ztiσij ∼ subG

(
α2

p∑
i=1

σ2ij

)
= subG

(
α2∥σ·j∥22

)
and

ẽu := (
T∑

s=1

rstssu)eu ∼ subG

(
α2(

T∑
s=1

rstssu)
2

)
,

which furthermore imply z̃tj ẽu ∼ ind. subE(4eα2|
∑T

s=1 rstssu|∥σ·j∥2) for each j. Therefore,

we can find by Lemma 1(c) that

T−1
T∑

t,u=1

z̃tj ẽu

∼ subE

4eα2∥σ·j∥2T−1

∑
t,u

(
T∑

s=1

rstssu

)2
1/2

, 4eα2∥σ·j∥2T−1max
t,u

∣∣∣∣∣
T∑

s=1

rstssu

∣∣∣∣∣

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for each j. Thus, Bernstein’s inequality of a sub-exponential random variable together with

the union bound yields

P

max
j

∣∣∣∣∣∣T−1
T∑

t,u=1

z̃tj ẽu

∣∣∣∣∣∣ > x

 ≤ pmax
j
P

∣∣∣∣∣∣T−1
T∑

t,u=1

z̃tj ẽu

∣∣∣∣∣∣ > x


≤ 2pmax

j
exp

− x2

32e2α4∥σ·j∥22T−2
∑T

t,u=1

(∑T
s=1 rstssu

)2


≤ 2p exp

(
− x2

32e2α4T−1maxj ∥σ·j∥22maxt ∥r·t∥21maxs ∥ss·∥22

)
for all x ∈ [0, I1], where

I1 = 4eα2min
j

∥σ·j∥2T−1
T∑

t,u=1

(
T∑

s=1

rstssu

)2

/

(
max
t,u

|
T∑

s=1

rstssu|

)
.

Note that I1 = O(1) and lim infT I1 > 0 due to Assumption 4 and Lemma 2. Thus, if we

can set x = (c̃1(1 + ν)T−1 log p)1/2 with

c̃1 = 32e2α4max
j

∥σ·j∥22max
t

∥r·t∥21max
s

∥ss·∥22 = O(1)

and an arbitrary fixed ν > 0, this falls into [0, I1] eventually. Then, the upper bound of the

probability reduces to

2p exp

(
− c̃1(1 + ν) log p

32e2α4maxj ∥σ·j∥22maxt ∥r·t∥21maxs ∥ss·∥22

)
= 2p exp (−(1 + ν) log p) = 2p−ν .

This means that ∥T−1X⊤u∥∞ ≤ τ(c̃1(1 + ν)T−1 log p)1/2 holds with probability at least

1 − 2p−ν for any fixed ν > 0. Thus, (9) holds with λ = c0(log p/T )
1/2 and c1 = ν, where

c0 = 2τ(c̃1(1 + ν))1/2 and ν arbitrary but positive fixed constant. □

B.3 Proof of Proposition 2

Proof. To bound T−1∥Xv∥22/∥v∥22 from below, it is helpful to find the convergence rate of

∥T−1X⊤X − E[T−1X⊤X]∥∞. By the construction, the (i, j)th element of X⊤X is given

by

(X⊤X)ij =
T∑
t=1

T∑
u=1

T∑
v=1

p∑
k=1

p∑
ℓ=1

rturtvσkiσℓjzukzvℓ.
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This summation is divided into to parts: (i) (u, k) = (v, ℓ) and (ii) (u, k) ̸= (v, ℓ). We bound

each and then combine these results.

We first consider (i). In this case, we have

(T−1X⊤X)ij − E(T−1X⊤X)ij = T−1
T∑

u=1

p∑
k=1

(
T∑
t=1

r2tu

)
σkiσkj

(
z2uk − Ez2uk

)
.

By Lemma 1.12 of Rigollet and Hütter (2017), we have z2uk − Ez2uk ∼ subE(16α2). Hence,

Lemma 1 yields

(T−1X⊤X)ij − E(T−1X⊤X)ij ∼

subE

16α2

(
p∑

k=1

σ2kiσ
2
kj

)1/2

T−1

 T∑
u=1

(
T∑
t=1

r2tu

)2
1/2

, 16α2max
k

σkiσkjT
−1max

u

T∑
t=1

r2tu


for each i and j. This implies that

P
(
∥T−1X⊤X − E[T−1X⊤X]∥∞ > x

)
≤ p2max

i,j
P
(∣∣∣(T−1X⊤X)ij − E(T−1X⊤X)ij

∣∣∣ > x
)

≤ 2p2max
i,j

exp

− x2

2 · 162α4
∑p

k=1 σ
2
kiσ

2
kjT

−2
∑T

u=1

(∑T
t=1 r

2
tu

)2


≤ 2p2 exp

(
− x2

512α4T−1maxi ∥σ2
·i∥22maxu ∥r·u∥42

)
for all x ∈ [0, I2], where

I2 = 16α2min
i

∥σ2
·i∥22T−1

T∑
u=1

(
T∑
t=1

r2tu

)2

/

(
max
k,i

σ2kimax
u

T∑
t=1

r2tu

)
.

This is shown to be bounded and lim infT I2 > 0. Setting x = (c̃2(2 + ν)T−1 log p)1/2 with

c̃2 = 512α4maxi ∥σ2
·i∥22maxu ∥r·u∥42 and an arbitrary fixed ν > 0 makes the upper bound be

equal to

2p2 exp

(
− c̃2(2 + ν) log p

512α4maxi ∥σ2
·i∥22maxu ∥r·u∥42

)
= 2p−ν .

This establishes the bound ∥T−1X⊤X − E[T−1X⊤X]∥∞ ≤ (c̃2(2 + ν)T−1 log p)1/2, which

holds with probability at least 1− 2p−ν .

Next we consider (ii). In this case, we have

(T−1X⊤X)ij − E(T−1X⊤X)ij = T−1
T∑

u=1

T∑
v=1

p∑
k=1

p∑
ℓ=1

(

T∑
t=1

rturtv)σkiσℓjzukzvℓ,
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where σkiσℓjzukzvℓ ∼ ind. subG(4eα2σkiσℓj) for each i and j by Lemma 1. Thus, we obtain

(T−1X⊤X)ij − E(T−1X⊤X)ij

∼ subE

4eα2T−1

 T∑
u,v=1

p∑
k,ℓ=1

(
T∑
t=1

rturtv

)2

σ2kiσ
2
ℓj

1/2

, T−1 max
u,v,k,ℓ

∣∣∣∣∣
T∑
t=1

rturtv

∣∣∣∣∣σkiσℓj


= subE

4eα2∥σ·i∥2∥σ·j∥2T−1

 T∑
u,v=1

(
T∑
t=1

rturtv

)2
1/2

,max
k,ℓ

σkiσℓj max
u,v

T−1

∣∣∣∣∣
T∑
t=1

rturtv

∣∣∣∣∣


for each i and j. By using the same inequality as in (i), we have a similar inequality

P
(
∥T−1X⊤X − E[T−1X⊤X]∥∞ > x

)
≤ 2p2 exp

(
− x2

2 · 16e2α4maxi ∥σ·i∥22T−2
∑T

u,v=1(
∑T

t=1 rturtv)
2

)

≤ 2p2 exp

(
− x2

32e2α4maxi ∥σ·i∥22T−1maxt ∥rt·∥22maxv ∥r·v∥21

)
for all x ∈ [0, I3], where

I3 = 4eα2min
i

∥σ·i∥22T−1
T∑

u,v=1

(
T∑
t=1

rturtv

)2

/max
k,i

σ2kimax
u,v

∣∣∣∣∣
T∑
t=1

rturtv

∣∣∣∣∣
and is shown to be bounded and lim infT I3 > 0. Setting x = (c̃3(2 + ν)T−1 log p)1/2 with

c̃3 = 32e2α4maxi ∥σ·i∥22maxt ∥rt·∥22maxv ∥r·v∥21 and an arbitrary fixed ν > 0 makes the

upper bound be equal to

2p2 exp

(
− c̃3(2 + ν) log p

32e2α4maxi ∥σ·i∥22maxt ∥rt·∥22maxv ∥r·v∥21

)
= 2p−ν .

This establishes the bound ∥T−1X⊤X − E[T−1X⊤X]∥∞ ≤ (c̃3(2 + ν)T−1 log p)1/2, which

holds with probability at least 1−2p−ν . Finally, combining (i) and (ii) with setting c̃2∨ c̃3 ≤

c̃4 := 512α4maxi ∥σ·i∥22maxt ∥rt·∥22maxv ∥r·v∥21 leads to the result

P
(
∥T−1X⊤X − E[T−1X⊤X]∥∞ ≤ γ0(log p/T )

1/2
)
≥ 1− 4p−ν , (10)

where γ0 = 2c̃
1/2
4 (2 + ν)1/2.

Finally, we bound T−1∥Xv∥22/∥v∥22 from below by some positive constant. Let W =

ZΣ1/2. We see that its expectation is bounded from below as

ET−1∥Xv∥22/∥v∥22 = ET−1

(
v⊤W⊤RWv

v⊤W⊤Wv

)(
v⊤W⊤Wv

v⊤v

)
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≥ min
h∈RT

(
h⊤Rh

h⊤h

)
min
v∈Rp

(
v⊤Σv

v⊤v

)
≥ c2min, (11)

where the last inequalities hold by Assumption 4. Since v is in V = {v ∈ Rp : ∥vB∥1 ≤

3∥vA∥1}, we have

v⊤E[T−1X⊤X]v − v⊤T−1X⊤Xv ≤ ∥v∥1
∥∥∥(E[T−1X⊤X]− T−1X⊤X)v

∥∥∥
∞

≤ ∥v∥21
∥∥∥E[T−1X⊤X]− T−1X⊤X

∥∥∥
∞

≤ (∥vA∥1 + ∥vB∥1)2γ0(log p/T )1/2

≤ 16∥vA∥21γ0(log p/T )1/2

≤ 16∥v∥22sγ0(log p/T )1/2,

where the third inequality follows from Lemma 10 with probability at least 1− 4p−ν . Rear-

ranging the terms and using (11) yield

T−1v⊤X⊤Xv/∥v∥22 ≥ T−1v⊤E[X⊤X]v/∥v∥22 − 16γ0s(log p/T )
1/2

≥ c2min − 16γ0s(log p/T )
1/2 =: γ.

Taking infimum over v ∈ V gives the result. □

C Extension to Heavy-Tailed Random Variables

We have derived the oracle inequality (Theorem 1) under the assumption that X and u

possess sub-Gaussian tails; see (3) and Assumption 4 with Definition 1. Taking recent

attention on heavy-tailed phenomena into consideration, however, this tail assumption is

sometimes too restrictive. In this section, we present a basic idea to extend it to heavy-

tailed situation. We first introduce a formal definition of a class of heavy-tailed random

variables called semi-exponential (denoted by semiE) class.

Definition 3. A random variable X ∈ R is said to be semi-exponential if E[X] = 0 and it

satisfies E[exp(a|X|ξ)] ≤ K for some a > 0, ξ ∈ (0, 1), and K > 0. In this case, we write

X ∼ semiE(a, ξ,K). (We just write semiE(ξ) below since a and K are not so important.)

This forms a family of random variables that have fatter tails than subE. In fact, subE

corresponds to the boundary case, ξ = 1, in Definition 3. It is noteworthy that for a sum
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of independent semiE random variables, Bernstein’s inequality is available as in the case of

subE though it has a little different formulation. As is explained in Section 3, Propositions 1

and 2 provide complete information for obtaining Theorem 1. More specifically, Bernstein’s

inequality (for subE) controls the entire stochastic behaviors in their proofs. In this sense, it

is conceptually straightforward to achieve the oracle inequality even under semiE conditions

since Bernstein’s inequality for semiE is applicable. We observe a specific way of extension.

For comparison, suppose first the case whereX and u are such that (xtiut)t ∼ i.i.d. subE(α)

for all i ∈ {1, . . . , p}. Note that this holds when xti and ut are both assumed subG; see Lemma

1. Here, we suppressed any time dependence in the model to elucidate an essential point.

Then, by Bernstein’s inequality together with the union bound, we have

P
(∥∥∥T−1X⊤u

∥∥∥
∞
> x

)
≤ pP

(∣∣∣∣∣T−1
T∑
t=1

xt1ut

∣∣∣∣∣ > x

)

≲ p exp
(
−C1Tx

2
)
+ p exp (−C2Tx) ,

where ≲ denotes ≤ up to a positive constant factor and C1 and C2 are some positive constants

that depend only on α. We can see that, if we assign x = λ ∼ (log p/T )1/2, we only consider

the first term in the upper bound because it dominates the second asymptotically. This is

also true for all λ converging to zero.

Next, suppose the case where X and u satisfy (xtiut)t ∼ i.i.d. semiE(ξ) for all i ∈

{1, . . . , p}. Then, from Nerlevede, Peligrad and Rio (2011), Bernstein’s inequality for semi-

exponential random variables is available:

P
(∥∥∥T−1X⊤u

∥∥∥
∞
> x

)
≲ p exp

(
−C1Tx

2
)
+ p exp

(
−C2T

ξxξ
)
.

Contrary to the case of xt1ut ∼ subE(α) above, the second term in the upper bound will

dominate the first for some class of λ to be assigned, depending on its convergence rate to

zero. This also depends how large p and ξ the model has. In general, we should take

λ ∼ (log p/T )1/2 ∨ (log p/T ξ)1/ξ,

which will make the upper bound of the probability be O(p−C) for some positive constant

C as long as we appropriately choose a large constant factor of λ. We are now interested in

which value becomes larger in response to p and ξ. To see this, suppose log p = T δ for some
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δ ∈ (0, 1). By a simple algebra, we have

λ ∼


(log p/T )1/2 = T (δ−1)/2 for 2δ/(δ + 1) ≤ ξ < 1,

(log p/T ξ)1/ξ = T (δ−ξ)/ξ for 0 < ξ < 2δ/(δ + 1).

Note that ξ = 2δ/(δ + 1) is a concave and increasing function in δ ∈ (0, 1) that connects

the origin and (1, 1). Roughly speaking, a combination of small δ and/or large ξ (i.e., lower

dimensionality and/or closer to the subE tails) leads to the usual bound; ∥T−1X⊤u∥∞ ≤ λ/2

holds with probability at least 1 − O(p−C) for some λ ∼ (log p/T )1/2 and C. On the other

hand, when δ is large and/or ξ is small (i.e., higher dimensionality and/or fatter tails than

subE), the bound holds with replacing by λ ∼ (log p/T ξ)1/ξ. As a result, the rates of

convergence implied by Theorem 1 change in the latter case.

Of course, we have to check the lower bound of infd∈V ∥Xd∥22/∥d∥22 as in Proposition

2 at the same time, but we omit the discussion here because the problem is essentially the

same. In fact, it is sufficient to consider a further upper bound of the probability

P
(∥∥∥T−1X⊤X − ET−1X⊤X

∥∥∥
∞
> x

)
≤

p∑
i,j=1

max
i,j

P

(∣∣∣∣∣T−1
T∑
t=1

(xtixtj − Extixtj)

∣∣∣∣∣ > x

)
,

where (xtixtj − Extixtj)t ∼ i.i.d. semiE, by using Bernstein’s inequality for semiE; see the

proof of Proposition 2. This may result in some rate change in (10) that will be caused by

a combination of given ξ and p.

D Collinearity

Another important assumption to achieve the oracle property (Property 1) is

∥HBAT ∥2,∞ ≡ max
∥v∥2=1

∥HBATv∥∞ = Op(1); (12)

see Fan and Lv (2011). This condition controls how much collinearity is allowed. In this

section, we investigate how collinearity between XB and XA affects condition (12). Recall

that HBAT = T−1X⊤
BXA for XA ∈ RT×s and XB ∈ RT×(p−s). We are interested in the

behavior of

∥HBAT ∥2,∞ ≡ max
∥v∥2=1

∥HBATv∥∞ = max
b∈B

max
∥v∥2=1

∣∣∣T−1x⊤
b XAv

∣∣∣ ,
39



where we write XAv =
∑

a∈A vaxa. This value is expected to become unbounded (and hence

condition (12) is violated) under strong collinearity.

To obtain understandable results, we make the following simplified assumptions: the

regressors are deterministic, and for any b ∈ B and a ∈ A, T−1x⊤
b xa → ρba ≥ 0. Moreover,

we assume either of the two conditions:

1. maxb∈B ρba ≥ c > 0 for all a ∈ A,

2. maxb∈B ρba ≤ ca−q/2 for some q > 1.

Condition 1 describes a highly correlated case. The correlation between xb and xa always

exists even if s increases. On the other hand, condition 2 models weaker correlations than con-

dition 1 does. Specifically, most of the correlations become small as q becomes large, meaning

that the effect of collinearity is limited in this case. In fact, it is not difficult to see that

∥HBAT ∥2,∞ diverges at least as fast as s1/2 under condition 1 while ∥HBAT ∥2,∞ is uniformly

bounded under condition 2. First, we suppose condition 1 and let v̄ = (s−1/2, . . . , s−1/2)⊤.

We then observe that

max
b∈B

max
∥v∥2=1

∣∣∣T−1x⊤
b XAv

∣∣∣ ≥ max
b∈B

∣∣∣T−1x⊤
b XAv̄

∣∣∣ = max
b∈B

∣∣∣∣∣s−1/2
∑
a∈A

T−1x⊤
b xa

∣∣∣∣∣ .
By condition 1, the last term is bounded from below by

s−1/2max
b∈B

∣∣∣∣∣∑
a∈A

(ρba + o(1))

∣∣∣∣∣ ≥ s1/2(c− o(1)),

which goes to infinity as s → ∞. Next, we suppose condition 2. By the Cauchy-Schwarz

inequality, we observe that

max
b∈B

max
∥v∥2=1

∣∣∣T−1x⊤
b XAv

∣∣∣ = max
b∈B

max
∥v∥2=1

∣∣∣∣∣∑
a∈A

vaT
−1x⊤

b xa

∣∣∣∣∣
= max

b∈B
max

∥v∥2=1

∣∣∣∣∣∑
a∈A

va (ρba + o(1))

∣∣∣∣∣
≤ max

b∈B

(∑
a∈A

ρ2ba (1 + o(1))

)1/2

≤ c

(∑
a∈A

a−q (1 + o(1))

)1/2

.

The last term converges since q > 1 under condition 2.

The following simulation shows that the strong collinearity (condition 1) affects the oracle

property. Table D.1 shows the relative finite sample success rates of the MCP detecting non-

zero (SC-A) coefficients and zero coefficients (SC-B) that are defined as

SC-A = P
(
sgn(β̂A) = sgn(β0A)

)
,
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SC-B = P
(
sgn(β̂B) = sgn(β0B)

)
,

respectively, and (average) mean squared error for estimates of non-zero coefficients (MSE(β̂A))

under condition 1 with 5000 repetitions compared to that of condition 2, when T = 300, 500, 1000

and c = 0.5, 0.98 with q = 4, p = 1.5 exp(T 0.31) and s = 20T 0.3. Then, the finite sample

properties of estimators under condition 1 are equivalent to those of condition 2 if the values

in the table are 1. We can confirm facts from Table D.1 that (i) the values of SC-A are rel-

atively low under condition 1 irrespective of the degree of collinearity (c) and (ii) the MSE

of condition 1 is expected to be much worse than the that of condition 2 asymptotically es-

pecially when the degree of collinearity is high. These facts are consistent to the theoretical

results because the condition 1 violates assumption (12) so that the oracle property is no

longer proved under condition 1.

E Finite Sample Forecasting Performance with Simulated Data

In this section, we examine finite sample performances of forecasts based on the MCP, SCAD,

Lasso, and OLS post-Lasso estimators using simulated data. We assume xt ∼ i.i.d.N(0,Σx),

where Σx = {σx,ij} in this experiment and set the DGP as follows:

σx,ij = ρ|i−j|, i, j = 1, 2, . . . , p,

yt = x⊤β0 + ut

= x⊤
Atβ0A + x⊤

Btβ0B + ut,

where β0,A is the s-dimensional unit vector, β0,B is the (p − s)-dimensional zero vector,

and ut ∼ i.i.d.N(0,Σu). Here we set Σu = β⊤
0 Σxβ0/SNR, where SNR ∈ (0,∞) is the

“signal-to-noise ratio” of the model. Note that the covariates allow for collinearity but are

assumed to be time-independence. We set SNR = 9 , p = 1000 and s = [T 0.5] throughout the

experiment. Under the setting, we see forecast performances of the MCP, SCAD, MCP, and

OLS post-Lasso when T = 200, 500, 700, 1000 and ρ = 0.3, 0.5, 0.8, respectively. Following

Section 4.1, we compare the out-of-sample forecast performances measured by the MSFEs.

The MSFEs are evaluated over 30 repetitions: we make the start point in the sample for

each estimation be fixed while the end point increases for each repetition, so that the size of

the estimation sample is ranging from T − 30 to T − 1.

Table E.1 shows the MSFEs of the MCP, SCAD, Lasso, and OLS post-Lasso. The values

in the table are standardized by that of the MCP, so that the value less than one means a
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forecast based on the corresponding estimator performs well compared to that of the MCP.

As a whole, the table shows the OLS post-Lasso dominates the others for all T and ρ. It

seems to perform much better when T is small in particular. Note that the OLS post-Lasso

estimator does not necessarily perform well in Section 4.1. We can conjecture from the two

conflicting results that time-dependent data distorts finite sample performance of the OLS

post-selection estimators.

F Forecast performance in real-time data

In this section, we investigate how well the forecast with penalized regression works with

the real-time data. It should be mentioned that in our experiment, strictly speaking, we

consider “pseudo” real-time forecasting; we suppose each monthly data for all evaluation

periods have the same jagged (ragged)-edge pattern as of the 2018-02 version of the FRED-

MD. For example, Real manufacturing and trade industry sales (CMRMTSPLx) and the

Help-wanted index (HWI) have two and one month missing values owing to publication lags

in the 2018-02 version, respectively. Then we suppose the data for all estimation periods

have the same jagged-edge patterns even if our dataset contains complete data for those

periods. Moreover, we assume no data revisions occur in our dataset.

Tables F.1–F.3 show the relative mean and median squared forecast errors of the penal-

ized regression and the state-space ML estimator proposed by Banbura and Modugno (2014)

in the real-time overall sample (2000Q1–2017Q4), 1st subsample (2000Q1–2007Q4), and 2nd

subsample (2008Q1–2017Q4), respectively. The tables omit the results for h > 1 and con-

centrate on the nowcast situation (0 ≤ h ≤ 1) because the real-time forecasting is meaningful

only in a very short horizon. The state-space ML estimation enables us to handle real-time

mixed frequency data by embedding missing patterns of data in the model; see Banbura

and Modugno (2014) for details. On the other hand, the penalized regression requires an

interpolated dataset to obtain the forecast values. Thus, we employ an interpolation method

based on the EM algorithm proposed by Stock and Watson (2002).

From the tables, we first find the effects of the jagged-edge and interpolation on the

forecast accuracy of the penalized regression are small and they do not essentially affect

the mean/median squared forecast errors values compared with the results in Tables 1–3.

Second, we see that the penalized regression performs well in terms of the median squared

errors although the state-space ML tends to performs better in terms of the MSFE. The

42



state-space ML is expected to have dominating forecasting performance compared to the

penalized regression, because the state-space ML is based on a system equation with richer

information while the penalized regression relies only on a single equation. However, this

would not be true when a model misspecification is present, as Bai, Ghysels, and Wright

(2013) claimed. Then, our results imply that the system equation may contain a certain level

of the misspecification. Moreover, it should be mentioned that the penalized regression is

much simpler and rapid than the state-space ML in obtaining the forecast values. Since the

dimension of the state-space model can be very large when we forecast with mixed frequency

(117 dimensional state-space models with 40 latent factors in our case), the estimation is

much computationally demanding and time consuming (roughly eight times longer than the

penalized regression). Furthermore, the estimated values can be unstable if we consider to

apply the state-space ML to a dataset with larger N and/or r.

Although we do not examine them here, we should also note that the Bayesian VAR

(BVAR) would be potential alternatives to the state-space ML; see e.g., Banbura, Giannone

and Reichlin (2010), Koop (2013), Schorfheide and Song (2015). The BVAR is expected

to have promising forecasting performance, however, it also seems much computationally

demanding than our univariate penalized regression. Moreover, its theoretical properties

would not have been well explored under ultrahigh dimensionality.
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Table 1: Mean/Median Forecast Errors of the forecasts in complete data [Overall Sample]

without yt−1 h = 0 h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

MCP 0.60 0.57 0.66 0.79 1.16 1.41 1.42

(median) (0.80) (0.63) (0.74) (0.69) (1.06) (1.59) (1.70)

SCAD 0.59 0.58 0.68 0.81 1.15 1.39 1.40

(median) (0.72) (0.55) (0.81) (0.68) (1.09) (1.48) (1.36)

Lasso 0.60 0.59 0.65 0.81 1.15 1.39 1.41

(median) (0.90) (0.68) (0.66) (0.63) (1.08) (1.48) (1.48)

Factor 0.76 2.41 0.65 0.95 2.06 1.15 1.49

(median) (0.68) (0.90) (0.74) (1.09) (2.29) (2.38) (1.85)

post-MCP 0.75 0.71 0.63 0.75 1.26 1.87 1.86

(median) (1.12) (0.94) (1.01) (0.98) (1.49) (2.00) (2.38)

post-SCAD 0.78 0.78 0.62 0.79 1.24 1.65 1.87

(median) (0.77) (0.88) (0.91) (0.75) (1.50) (2.57) (2.51)

post-Lasso 0.79 0.75 0.63 0.79 1.24 1.65 1.86

(median) (0.88) (0.73) (0.91) (0.75) (1.50) (2.57) (2.51)

with yt−1 h = 0 h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

MCP 0.61 0.57 0.55 0.78 1.17 1.45 1.46

(median) (0.79) (0.84) (0.76) (0.76) (1.32) (1.79) (1.88)

SCAD 0.58 0.58 0.57 0.79 1.15 1.46 1.54

(median) (0.85) (0.77) (0.69) (0.82) (1.42) (1.65) (1.84)

Lasso 0.64 0.60 0.61 0.79 1.14 1.44 1.44

(median) (0.93) (0.73) (0.61) (0.71) (1.41) (1.50) (1.86)

Factor 0.63 2.50 0.59 1.12 2.48 1.27 1.66

(median) (0.73) (0.93) (0.64) (0.96) (1.30) (2.10) (1.70)

post-MCP 0.74 0.77 0.49 0.73 1.27 1.81 1.94

(median) (0.94) (0.61) (0.68) (0.93) (1.43) (2.45) (2.57)

post-SCAD 0.77 0.73 0.55 0.77 1.42 1.59 1.79

(median) (0.92) (0.90) (0.70) (0.95) (1.19) (2.27) (2.44)

post-Lasso 0.79 0.73 0.54 0.77 1.40 1.58 1.79

(median) (0.92) (0.90) (0.65) (0.97) (1.19) (2.27) (2.44)

Note) The entries are the ratios of mean/median forecast errors to that of AR(4) forecast. Values in paren-

theses are median forecast errors.
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Table 2: Mean/Median Forecast Errors of the forecasts in complete data [1st Subsample]

without yt−1 h = 0 h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

MCP 0.73 0.73 0.79 0.92 1.03 1.32 1.35

(median) (0.60) (0.73) (0.88) (0.87) (1.30) (1.86) (1.97)

SCAD 0.75 0.76 0.80 0.92 1.01 1.27 1.27

(median) (0.74) (0.63) (1.11) (0.88) (1.14) (1.80) (1.76)

Lasso 0.74 0.75 0.76 0.93 1.01 1.27 1.27

(median) (0.57) (0.54) (0.80) (0.88) (1.14) (1.80) (1.76)

Factor 0.73 0.79 0.97 1.11 1.41 1.62 1.66

(median) (0.82) (0.94) (1.11) (1.47) (3.11) (3.18) (3.88)

post-MCP 0.76 0.74 1.02 0.99 1.17 1.66 1.66

(median) (1.33) (1.33) (2.18) (1.84) (1.78) (3.36) (3.36)

post-SCAD 0.73 0.77 1.00 1.00 1.23 1.65 1.65

(median) (1.07) (1.12) (1.50) (1.62) (1.95) (3.03) (3.03)

post-Lasso 0.73 0.77 1.00 1.00 1.23 1.65 1.65

(median) (1.07) (1.12) (1.50) (1.62) (1.95) (3.03) (3.03)

with yt−1 h = 0 h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

MCP 0.81 0.79 0.75 0.99 1.11 1.33 1.38

(median) (0.82) (0.86) (1.11) (1.08) (1.69) (2.03) (2.25)

SCAD 0.80 0.82 0.77 0.96 1.08 1.34 1.38

(median) (0.97) (0.69) (1.03) (0.97) (1.68) (1.97) (2.36)

Lasso 0.86 0.79 0.78 0.96 1.08 1.35 1.32

(median) (0.97) (0.71) (0.83) (0.97) (1.70) (1.92) (2.09)

Factor 0.64 0.96 0.89 0.94 1.03 1.95 1.79

(median) (1.04) (1.20) (0.91) (1.33) (1.63) (3.73) (3.23)

post-MCP 0.78 0.75 0.80 1.04 1.27 1.61 1.60

(median) (1.49) (1.08) (1.53) (1.64) (1.75) (3.43) (3.24)

post-SCAD 0.84 0.86 0.74 0.99 1.24 1.60 1.60

(median) (1.15) (1.36) (0.99) (1.56) (1.96) (2.97) (2.97)

post-Lasso 0.84 0.85 0.75 0.99 1.24 1.60 1.60

(median) (1.15) (1.27) (1.24) (1.56) (1.96) (2.97) (2.97)

Note) The entries are the ratios of mean/median forecast errors to that of AR(4) forecast. Values in paren-

theses are median forecast errors.
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Table 3: Mean/Median Forecast Errors of the forecasts in complete data [2nd Subsample]

without yt−1 h = 0 h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

MCP 0.54 0.50 0.60 0.73 1.23 1.45 1.46

(median) (0.83) (0.70) (0.70) (0.60) (1.02) (1.65) (1.61)

SCAD 0.51 0.49 0.63 0.76 1.22 1.45 1.46

(median) (0.71) (0.55) (0.72) (0.65) (1.15) (1.40) (1.29)

Lasso 0.53 0.52 0.59 0.75 1.21 1.45 1.48

(median) (0.88) (0.77) (0.62) (0.59) (1.21) (1.40) (1.40)

Factor 0.77 3.16 0.49 0.87 2.37 0.92 1.41

(median) (0.77) (0.94) (0.74) (1.91) (2.58) (1.56) (1.91)

post-MCP 0.74 0.69 0.44 0.64 1.30 1.98 1.95

(median) (0.73) (0.86) (0.55) (0.65) (1.06) (1.58) (2.05)

post-SCAD 0.81 0.79 0.44 0.69 1.25 1.65 1.97

(median) (0.73) (0.62) (0.40) (0.70) (0.89) (2.44) (2.38)

post-Lasso 0.82 0.75 0.45 0.69 1.25 1.66 1.97

(median) (0.81) (0.66) (0.77) (0.69) (0.84) (2.44) (2.38)

with yt−1 h = 0 h = 1/3 h = 2/3 h = 1 h = 4/3 h = 5/3 h = 2

MCP 0.51 0.47 0.45 0.68 1.20 1.51 1.49

(median) (0.91) (0.84) (0.69) (0.41) (1.05) (1.75) (1.78)

SCAD 0.49 0.47 0.48 0.71 1.18 1.51 1.61

(median) (0.84) (0.78) (0.58) (0.66) (1.23) (1.47) (1.72)

Lasso 0.53 0.51 0.53 0.71 1.18 1.48 1.50

(median) (0.95) (0.75) (0.57) (0.61) (1.20) (1.37) (1.82)

Factor 0.62 3.22 0.44 1.20 3.17 0.95 1.60

(median) (0.57) (1.45) (0.57) (1.54) (1.64) (1.49) (1.94)

post-MCP 0.71 0.78 0.34 0.58 1.27 1.90 2.10

(median) (0.76) (0.55) (0.51) (0.70) (0.95) (1.48) (2.13)

post-SCAD 0.73 0.67 0.46 0.67 1.50 1.59 1.87

(median) (0.88) (0.50) (0.67) (0.77) (1.04) (1.93) (2.29)

post-Lasso 0.77 0.68 0.44 0.67 1.48 1.57 1.87

(median) (0.90) (0.59) (0.57) (0.77) (1.04) (1.77) (2.26)

Note) The entries are the ratios of mean/median forecast errors to that of AR(4) forecast. Values in paren-

theses are median forecast errors.
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Table D.1: Relative SC-A, SC-B and MSE (cond.1/cond.2)

c = 0.5 c = 0.98

SC −A SC −B MSE SC −A SC −B MSE

T = 300 0.80 1.01 1.17 0.97 1.00 0.99

T = 500 0.80 1.01 1.36 0.98 0.99 0.94

T = 1000 1.00 1.00 1.06 0.94 1.00 2.36

Table E.1: Mean squared forecast errors of the forecasts in simulated data. Values less than

one indicate better performance than MCP.

ρ = 0.8 T = 200 T = 500 T = 700 T = 1000

MCP 1.00 1.00 1.00 1.00

SCAD 1.00 1.00 1.00 1.00

Lasso 0.92 0.93 0.94 0.95

post-Lasso 0.86 0.90 0.92 0.92

ρ = 0.5 T = 200 T = 500 T = 700 T = 1000

MCP 1.00 1.00 1.00 1.00

SCAD 1.02 1.01 1.00 1.00

Lasso 1.02 1.02 1.02 1.02

post-Lasso 0.84 0.92 0.94 0.95

ρ = 0.3 T = 200 T = 500 T = 700 T = 1000

MCP 1.00 1.00 1.00 1.00

SCAD 1.01 1.00 1.00 1.00

Lasso 1.11 1.05 1.05 1.05

post-Lasso 0.84 0.93 0.94 0.95

Note) The entries are the ratios of the MSFEs to that of MCP.
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Table F.1: Mean/Median Forecast Errors of the forecasts in jagged-edge data [Overall sam-

ple]

h = 0 h = 1/3 h = 2/3 h = 1

MCP 0.62 0.60 0.56 0.79

(median) (0.83) (0.64) (0.81) (0.66)

SCAD 0.61 0.59 0.60 0.81

(median) (0.76) (0.57) (0.94) (0.67)

Lasso 0.61 0.59 0.54 0.79

(median) (0.94) (0.71) (0.64) (0.65)

State-Space ML 0.51 0.50 0.60 0.72

(median) (0.76) (0.74) (1.08) (0.87)

Note) The entries are the ratios of mean/median forecast errors to that of AR(4) forecast. Values in paren-

theses are median forecast errors.

Table F.2: Mean/Median Forecast Errors of the forecasts in jagged-edge data [1st Subsample]

h = 0 h = 1/3 h = 2/3 h = 1

MCP 0.73 0.75 0.72 0.92

(median) (0.73) (0.94) (1.07) (0.87)

SCAD 0.75 0.80 0.72 0.92

(median) (0.74) (1.02) (1.11) (0.89)

Lasso 0.73 0.78 0.71 0.92

(median) (0.60) (1.05) (0.77) (0.89)

State-Space ML 0.65 0.67 0.71 0.92

(median) (0.71) (1.10) (0.69) (1.20)

Note) The entries are the ratios of mean/median forecast errors to that of AR(4) forecast. Values in paren-

theses are median forecast errors.
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Table F.3: Mean/Median Forecast Errors of the forecasts in jagged-edge data [2nd Subsam-

ple]

h = 0 h = 1/3 h = 2/3 h = 1

MCP 0.57 0.54 0.48 0.73

(median) (0.99) (0.61) (0.61) (0.47)

SCAD 0.54 0.49 0.54 0.75

(median) (0.85) (0.53) (0.73) (0.58)

Lasso 0.55 0.51 0.46 0.74

(median) (0.98) (0.65) (0.56) (0.56)

State-Space ML 0.44 0.43 0.54 0.63

(median) (0.93) (0.69) (1.13) (0.60)

Note) The entries are the ratios of mean/median forecast errors to that of AR(4) forecast. Values in paren-

theses are median forecast errors.
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