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Abstract

This paper studies equilibrium selection in persuasion games where the receiver’s actions

are binary, and discusses how to justify the most informative equilibrium as a reasonable con-

sequence. In general, there exist multiple equilibria in this environment even if the sender’s

private information is fully certifiable, and the convention of focusing on the most informative

equilibrium is followed without formal justification. However, we show that the existing selec-

tion criteria in the literature on strategic communication hardly justifies such a convention; in

particular, these criteria might select the least informative equilibrium. We then suggest the

notion of certifiable dominance, and show that the most informative equilibrium is uniquely

selected by a perfect Bayesian equilibrium constructed using certifiably undominated strategies.

This criterion could also uniquely select the most informative equilibrium when the sender’s

private information is partially certifiable.
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1 Introduction

As formalized by Milgrom (1981) and Milgrom and Roberts (1986), persuasion games are costless

sender–receiver games, where the sender’s private information is certifiable.1 The sender has an

incentive to manipulate the information transmitted to the receiver, but misrepresentation of the

information is prohibited because of its certifiability. Instead of lying, the sender manipulates it by

concealing unfavorable information. In other words, the sender strategically decides to what extent

the information is disclosed to the receiver. These seminal papers consider an environment where

(i) the sender’s preference is monotonic in the receiver’s action, (ii) the receiver can distinguish

whether the sender conceals information, and (iii) no player can commit any strategy. They show

that full information revelation is the unique equilibrium outcome, which is well-known as the

unraveling argument in the literature.

While there exist multiple equilibria once the above assumptions are relaxed, equilibrium se-

lection in persuasion games is not as widely investigated in the literature. Following these seminal

papers, most of the existing studies check the validity of the unraveling argument under several

environments.2 That is, they conventionally focus on the fully revealing equilibrium, namely, the

most informative one, among multiple equilibria. However, to the best of our knowledge, there is

no reasonable justification for such a convention. In contrast with cheap-talk games à la Craw-

ford and Sobel (1982), the players may conflict even ex ante. Furthermore, if the fully revealing

equilibrium never exists, then equilibrium selection becomes more subtle. For example, Forges and

Koessler (2008) and Miura (2014) consider environments in which the sender’s private information

is fully certifiable but assumption (i) is relaxed, and then, they characterize the set of equilibria.3

These papers demonstrate the nonexistence of a fully revealing equilibrium with multiple equilibria,

but they do not discuss which equilibrium is the most plausible. This issue heavily restricts the

applicability of persuasion games, and thus, it is important to overcome this limitation.

In this paper, we restrict our attention to an environment where the receiver’s available actions

1Following the convention, we treat the sender as male and the receiver as female.
2Subsequent studies are categorized as follows. First, Seidmann and Winter (1997), Giovannoni and Seidmann

(2007), and Hagenbach et al. (2014) relax assumption (i) by allowing the state-dependent preference of the sender.
Second, as a relaxation of assumption (ii), Dye (1985), Jung and Kwon (1988), Okuno-Fujiwara et al. (1990), Shin
(1994), Koessler (2003), Bhattacharya and Mukherjee (2013), and Hummel et al. (2015) consider models where the
sender is imperfectly informed. Likewise, Fishman and Hagerty (1990), Lipman and Seppi (1995), Wolinsky (2003),
Lanzi and Mathis (2008), Mathis (2008), and Dziuda (2011) assume that the sender’s private information is partially
certifiable. Finally, Glazer and Rubinstein (2006) and the literature of Bayesian persuasion à la Kamenica and
Gentzkow (2011) relax assumption (iii) by allowing commitments by either the receiver or the sender, respectively.

3The characterization in these papers are based on the following additional restrictions. Forges and Koessler (2008)
geometrically characterize a set of equilibria requiring that the sender’s certifiability is sufficiently rich. Miura (2014)
focuses on a scenario where the receiver’s actions are binary. To the best of our knowledge, full characterization of
an equilibrium set without additional requirements is yet to be attempted.
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are binary, and then challenge the issue. That is, we discuss equilibrium selection of persuasion

games with binary actions, and provide justification for the convention focusing on the most infor-

mative equilibrium. Focusing on an environment with binary actions seems restrictive theoretically,

but it is important to investigate this class because it includes many interesting examples, as fol-

lows.4

Example 1 Consider a sales clerk (sender) and a buyer (receiver) in a retail store. The buyer,

who is not familiar with the specifications of tablet computers, asks the sales clerk to recommend

a suitable product for her. The sales clerk suggests a product and demonstrates its performance to

support his opinion. The buyer knows that the sales clerk could be biased toward some particular

product, and then decides whether to “buy the recommended product” or “not.”

Example 2 Consider a subordinate (sender) and a boss (receiver) in a firm. The subordinate

has better information about the status of the market than the boss, and then suggests a new

project by displaying data that support his suggestion. Given the preference of the subordinate

toward that project, the boss decides whether to “accept” or “reject” the proposal.

Example 3 Consider a media outlet (sender) and a voter (receiver) in an election. The media

outlet provides several election-related bits of information that are based on the facts, such as

commentaries on proposed policies, endorsement of /opposition against the candidates, and so on.

The voter discounts what the outlet conveys depending on his ideological position, and then casts

the ballot for either the “Republican Party” or the “Democratic Party.”

Besides these examples, the structure of persuasion games with binary actions is frequently ob-

served in the real world. However, such a structure complicates the issue in the sense that multiple

equilibria are more likely to exist even though the players’ preferences are reasonable compared to

a scenario without the binary structure. Thus, it is difficult to obtain a sharp prediction for such

prevalent events without clarifying which equilibrium is the most plausible.

The results of this paper are as follows. First, we show that it is difficult to justify the convention

that focuses on the most informative equilibrium using the selection criteria given in the literature on

strategic communication. For example, the neologism proofness (Farrell, 1993) eliminates nothing,

and the (strongly) announcement proofness (Matthews et al., 1991) could uniquely selects the

least informative equilibrium if the fully pooling equilibrium exists; otherwise, all equilibria are

4Events similar to the examples can be modeled as persuasion games. See, for example, Celik (2014), Itoh (2016),
and Miura (2015), respectively.
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eliminated. Second, we suggest the notion of certifiable dominance as a selection criterion, and then

show that the most informative equilibrium is uniquely selected by a perfect Bayesian equilibrium

(hereafter, PBE) constructed by certifiably undominated strategies. The certifiable dominance is

the modified version of weak dominance in the sense that the players’ strategies are restricted to

those consistent with the certification assumption when we apply the dominance argument. Hence,

this notion is closely related to ∆-rationalizability à la Battigalli and Siniscalchi (2003) in the sense

that the ∆-rationalizability derives the same selection results under the appropriate restrictions on

beliefs. Finally, although we mainly focus on the scenario where the sender’s private information

is fully certifiable, we show that the unique selection of the most informative equilibrium by the

certifiable dominance can be extended to the scenario of partial certifiable information.

This paper is organized as follows. In the next subsection, we discuss the related literature. In

Section 2, we outline the model where the sender’s private information is fully certifiable. In Section

3, we review the characterization of the equilibrium set, and then discuss equilibrium selection in

Section 4. In Section 5, we extend the selection result to an environment with partially certifiable

information. Section 6 concludes the paper. All the proofs appear in Appendix A.

1.1 Related literature

It is common practice to restrict players’ choices to a binary decision is widespread in many fields

of economics, including the literature on persuasion games. In the context of persuasion games,

restrictions on the binary decision by the receiver enable us to provide a full characterization of

equilibria, optimal decision rules, and so on. First, Lanzi and Mathis (2008), Dziuda (2011), and

Miura (2014) describe non-fully-revealing behaviors in equilibrium, assuming that the players do

not make commitments. Lanzi and Mathis (2008) and Dziuda (2011), on the one hand, consider

persuasion games in which the sender’s private information is partially certifiable, and provide

detailed properties of the equilibria. On the other hand, Miura (2014) assumes fully certifiable

information as the cost of fewer restrictions on preferences, and characterizes the set of equilibria

in terms of the receiver’s ex ante expected utility. Second, Glazer and Rubinstein (2006), Rayo and

Segal (2010), and Kolotilin (2015) analyze models where the players can commit their behaviors.

Glazer and Rubinstein (2006) allow commitments to decision rules by the receiver, and characterize

the optimal decision rule that minimizes the probability of incorrect decision making by the receiver.

In the context of Bayesian persuasion, Rayo and Segal (2010) and Kolotilin (2015) provide a detailed

characterization of the optimal disclosure rule that maximizes the sender’s utility.

Equilibrium selection is one of the main concerns in the literature on signaling games. In costly
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signaling games, Cho and Kreps (1987) and Banks and Sobel (1987) propose well-known criteria,

that is, the intuitive criterion, D1/D2 criterion, and (universal) divinity, based on the concept of

strategic stability proposed by Kohlberg and Mertens (1986), which typically selects the separating

equilibria. In contrast, undefeatedness, developed by Mailath et al. (1993), is immune to the

Stiglitz critique, and could select a pooling equilibrium as a reasonable prediction. In cheap-talk

games, Farrell (1993) develops the notion of neologism proofness, which is justified by self-fulfilling

beliefs as in Grossman and Perry (1986), and Matthews et al. (1991) propose the announcement

proofness as a generalization of the neologism proofness. On the other hand, credible message

rationalizability by Rabin (1990) and proposal proofness by Zapater (1997) are criteria based on

the rationalizability. While these criteria work well in some classes of cheap-talk games, they are

useless under Crawford and Sobel’s (1982) framework. As a useful criterion for the Crawford-Sobel

games, Chen et al. (2008) propose the NITS condition that uniquely selects the most informative

equilibrium under some regularity conditions.

This paper contributes to the literature as follows. We borrow the models of Miura (2014) and

Lanzi and Mathis (2008), and discuss which equilibrium is the most plausible or how to justify

the convention focusing on the most informative equilibrium. In contrast with costly signaling and

cheap-talk games, equilibrium selection in persuasion games is less discussed in the literature. As

a few exceptions, Giovannoni and Seidmann (2007) and Chen et al. (2008) informally discuss the

limitation of the intuitive criterion and the NITS condition, respectively. Ryan and Vaithianathan

(2011) construct an example to show that the fully revealing equilibrium is eliminated by the

neologism proofness. This paper provides formal and comprehensive arguments on equilibrium

selection in persuasion games with binary actions.

2 The Model

There exists one sender and one receiver. The receiver has to choose action y ∈ Y ≡ {y1, y2}, but

the outcome depends on the state of nature θ ∈ Θ ≡ [0, 1], which is the sender’s private information.

Let F (·) be the atomless common prior distribution over state space Θ with full support and density

function f(·). Letm ∈ M(θ) ≡
{
m ∈ 2Θ

∣∣ θ ∈ m
}
be a message from the sender, whereM(θ) is the

sender’s message space when the state is θ. Denote the entire message space by M ≡
∪

θ∈ΘM(θ),

and the set of states where message m is available by M−1(m) ≡ { θ ∈ Θ | m ∈ M(θ) }. There are

two remarks to be mentioned. First, any available message under state θ must contain the truth.

Second, for any subset T ⊆ Θ, message m = T has the property that M−1(T ) = T ; that is, any
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state is fully certifiable.

The players’ preferences are defined as follows. The receiver’s and the sender’s von Neumann–

Morgenstern utility functions are denoted by u : Θ × Y → R and v : Θ × Y → R, respectively.

The state space Θ is divided into the following regions depending on ex post conflicts between

the players. Let Θij ≡
{
θ ∈ Θ

∣∣ u(θ, yi) > u(θ, yi′) and v(θ, yj) > v(θ, yj′)
}
be the set of states in

which the receiver strictly prefers action yi to yi′ and the sender strictly prefers action yj to yj′

ex post for i, i′, j, j′ ∈ {1, 2} with i ̸= i′ and j ̸= j′, and define Θ0 ≡ Θ\ (Θ11 ∪Θ22 ∪Θ12 ∪Θ21).

If state θ lies in regions Θ11 ∪ Θ22 ∪ Θ0, then the players’ ex post preferred actions coincide.

Otherwise, their ex post preferred actions are in conflict. We call the former agreement regions and

the latter disagreement regions, respectively. Let yR(θ) ∈ argmaxy∈Y u(θ, y) be the receiver’s ex

post preferred action at state θ. Likewise, let yS(θ) represent the sender’s ex post preferred action

at θ. Hereafter, to simplify representations, for measurable T ⊆ Θ, we denote P (T ) ≡
∫
T f(θ)dθ,

and E[·|T ] ≡ E[·|θ ∈ T ]. We assume that all information except state θ is common knowledge.

We assume the following for the preferences.

Assumption 1

(i) P (Θ0) = 0.

(ii) E [u(θ, y1)|Θ12 ∪Θ21] ̸= E [u(θ, y2)|Θ12 ∪Θ21].

Assumption 1 is a mild requirement. Condition (i) means that either one of the players being

indifferent between actions is a measure-0 event, and Condition (ii) is generically satisfied. To ease

exposition, we, hereafter, assume that E[u(θ, y1)|Θ12∪Θ21] > E[u(θ, y2)|Θ12∪Θ21], i.e., the receiver

strictly prefers action y1 conditional on the entire disagreement region, without loss of generality.

These conditions are essential for both the characterization of the equilibrium set and equilibrium

selection.

Assumption 2

(i) Both u and v are continuous in θ for any y ∈ Y .

(ii) E [u(θ, y1)|Θ11 ∪Θ21] ≥ E [u(θ, y2)|Θ11 ∪Θ21] and E [u(θ, y1)|Θ22 ∪Θ12] ≤ E [u(θ, y2)|Θ22 ∪Θ12].

It is worthwhile to mention that Assumption 2 only simplifies the characterization of the equilibrium

set, and it is irrelevant to the equilibrium selection.5 Condition (ii) requires that ex post conflict is
5As long as we focus on pure strategy equilibria, we do not require Condition (ii). Combined with Assumptions

1 and 2-(ii), the most and the least informative equilibria are characterized by pure strategies even though mixed
strategies are allowed. Hence, we can focus on pure strategy equilibria without loss of generality when we characterize
the equilibrium set. See Corollary 2 of Miura (2014).
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not too strong in the sense that the receiver also weakly prefers action y1 (resp. y2) conditional on

the overall states in which the sender strictly prefers action y1 (resp. y2).

The timing of the game is as follows. First, nature chooses the state of the world θ ∈ Θ according

to the prior distribution f(·), and only the sender observes it. Given state θ, the sender sends a

message m ∈ M(θ). After observing message m, the receiver undertakes an action y ∈ Y .

The players’ strategies and beliefs are defined as follows. Let σ : Θ → ∆∗(M) be the sender’s

strategy where ∆∗(M) represents the set of finite-support probability distributions over M .6 Let

ϕ : M → ∆(Y ) and P : M → ∆(Θ) be the receiver’s strategy and posterior belief, respectively.7 We

use the PBE as a solution concept. Because of the full certifiability, we put the following additional

restrictions on off-the-equilibrium-path beliefs, which are common in the literature. We denote the

support of probability distribution g by S(g).

Requirement 1 For any message m ∈ M , S(P(m)) ⊆ m.

Definition 1 PBE

A triple (σ∗, ϕ∗;P∗) is a PBE if it satisfies the following conditions:

(i) For any θ ∈ Θ and m ∈ S(σ∗(θ)), m ∈ arg max
m′∈M(θ)

v
(
θ, ϕ∗(m′)

)
;

(ii) For any m ∈ M and y ∈ S(ϕ∗(m)), y ∈ argmax
y′∈Y

EP∗(m)

[
u(θ, y′)

]
;

(iii) P∗ is derived by σ∗ consistently from Bayes’ rule whenever it is possible. Otherwise, P∗ is

some probability distribution satisfying Requirement 1.

We evaluate each equilibrium in terms of its informativeness, measured by the receiver’s ex ante

expected utility. Let Ū(θ, ϕ(σ(θ))) represent the receiver’s expected utility at state θ if strategy

(σ, ϕ) is played, i.e.,

Ū(θ, ϕ(σ(θ))) ≡
∑
m∈M

∑
y∈Y

u(θ, y)ϕ(y|m)σ(m|θ), (1)

and E[Ū(θ, ϕ∗(σ∗(θ)))] represent the receiver’s ex ante expected utility in equilibrium (σ∗, ϕ∗;P∗).

We say that PBE (σ∗, ϕ∗;P∗) is a fully revealing equilibrium if ϕ∗(σ∗(θ)) = yR(θ) for any θ ∈ Θ.

6For technical convenience, we exclude mixed strategies whose supports are infinite sets.
7With some abuse of notation, pure strategies of the sender and receiver are simply represented by σ(θ) = m and

ϕ(m) = y, respectively.
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3 Set of Equilibria

The set of equilibria is characterized by the most/least informative equilibria. Then there exist

continuum equilibria as follows.8

Theorem 1 (Miura, 2014) Suppose that Assumptions 1 and 2 hold.

(i) One of the most informative equilibria (σ+, ϕ+;P+) with E
[
Ū(θ, ϕ+(σ+(θ)))

]
= U+ is as

follows:

σ+(θ) =

 {θ} if θ ∈ Θ11 ∪Θ22 ∪Θ0,

Θ12 ∪Θ21 otherwise.
(2)

(ii) One of the least informative equilibria (σ−, ϕ−;P−) with E
[
Ū(θ, ϕ−(σ−(θ)))

]
= U− is as

follows:

σ−(θ) =


Θ11 ∪Θ21 if θ ∈ Θ11 ∪Θ21,

Θ22 ∪Θ12 if θ ∈ Θ22 ∪Θ12,

{θ} otherwise.

(3)

(iii) There exists equilibrium (σ, ϕ;P) such that E[u(θ, ϕ(σ(θ)))] = U if and only if U ∈ [U−, U+].

Proof. See Miura (2014). ■
In the most informative equilibrium (σ+, ϕ+;P+), all types in the agreement regions fully

disclose their own identities, and the others send a pooling message. This structure is associated

with the fully revealing equilibrium if it exists.9 On the other hand, in the least informative

equilibrium (σ−, ϕ−;P−), only two messages are generically sent on the equilibrium path. That

is, almost every type who strictly prefers action y1 (resp. y2) sends message Θ11 ∪ Θ21 (resp.

Θ22 ∪Θ12).
10 Notice that any type in the agreement regions Θ11 ∪Θ22 should certainly induce his

ideal action that is identical to yR(θ) in any equilibrium; otherwise, such a type has an incentive

to fully disclose his type. Hence, the informativeness of each equilibrium is essentially determined

8It is worth mentioning that while this measurement is widely used in the literature on strategic communication
games, e.g., Crawford and Sobel (1982), it is different from a similar-sounding concept used in information theory.

9The fully revealing equilibrium exists if and only if either Θ12 = ∅ or Θ21 = ∅ holds. If Θ12 ̸= ∅ and Θ21 ̸= ∅,
then type θ ∈ Θ12 has an incentive to mimic type θ′ ∈ Θ21 and vice versa. Hence, the fully revealing equilibrium
never exists. See Giovannoni and Seidmann (2007), Hagenbach et al. (2014), and Miura(2014).

10Without Assumption 2-(ii), such a pooling structure is never supported in equilibrium. However, we can construct
an equilibrium with a similar structure, which minimizes the receiver’s ex ante expected utility. See Proposition 3 of
Miura (2014).
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depending on the equilibrium outcomes over the disagreement regions. It is then straightforward

that equilibrium (σ−, ϕ−;P−) minimizes the receiver’s ex ante expected utility because the receiver

undertakes ex post incorrect action over the entire disagreement region. It is worthwhile to remark

that the players’ preferences conflict even ex ante in the sense that the least informative equilibrium

is the best scenario for the sender. Because of the full certifiability, we can construct an equilibrium

in which the receiver undertakes ex post incorrect action over any region X such that Θ21 ⊆ X ⊆

Θ12 ∪Θ21, which is the main reason for the existence of continuum equilibria.

4 Equilibrium Selection

This section studies the equilibrium selection in this environment. First, we check the validity of

the existing criteria. We then suggest the notion and usefulness of certifiable dominance.

4.1 Existing criteria

In this subsection, we discuss the validity of the neologism proofness and announcement proofness,

both of which are well-known criteria in the literature on cheap-talk games.11 These criteria seem

applicable even in the context of persuasion games. When applying these criteria in cheap-talk

games, we additionally assume that some messages have literal meaning; that is, the meaning of

these messages is exogenously given, which differs from cheap-talk messages whose meaning is en-

dogenously determined in equilibrium. Because the sender’s message space varies depending on

his type in persuasion games, there exists a message that is available to type θ but unavailable

to type θ′. The literal meaning of such a message is that “the sender’s type is not θ′.” Hence,

the assumption of the literal meaning generally holds in persuasion games, and then we can apply

these criteria without additional assumptions. We show that the neologism proofness has no bite

in this environment, but the announcement proofness uniquely selects the least informative equilib-

rium under Assumption 2, which is incoherent with the convention focusing on the fully revealing

equilibrium.12

We introduce additional notation. Let d ≡ (δ,D) be an announcement strategy where (i) a

11The NITS condition (Chen et al., 2008) is also a well-known criterion in the literature on cheap-talk games.
However, this criterion is specialized to the class of cheap-talk games developed by Crawford and Sobel (1982), and
the crucial assumptions in that class may not be satisfied in our environment. Hence, it seems inappropriate to apply
the NITS condition to our setup.

12In Appendix B, we also discuss the validity of (i) the intuitive criterion (Cho and Kreps, 1987), (ii) D1 and
D2 criteria (Cho and Kreps, 1987; Cho and Sobel, 1990), (iii) undefeatedness (Mailath et al., 1993), (iv) credible
message equilibrium (Rabin, 1990), and (v) proposal-proof equilibrium (Zapater, 1997). We show that (i), (ii), (iii),
and (v) eliminate nothing like the neologism proofness. On the other hand, (iv) uniquely selects the least informative
equilibrium under a slight modification.
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nonempty subset D ⊆ Θ is a set of deviant types, and (ii) a function δ : D → ∆∗(M) with

δ(θ) ∈ ∆(M(θ)) for any θ ∈ D is a talking strategy of the deviant types.13 The set of announcement

strategies is denoted by Σd. We say that an announcement strategy is a neologism if δ(θ) = D

for any θ ∈ D. Let a ≡ (m, d) such that m ∈
∪

θ∈D S(δ(θ)) denote an announcement. Let

PA : Θ×M ×Σd → ∆(Θ) be the receiver’s consistent belief after observing announcement (m, d),

which is defined by:

PA(θ|m, d) ≡


f(θ)δ(m|θ)∫

D f(θ̂)δ(m|θ̂)dθ̂
if θ ∈ D,

0 otherwise.

(4)

Let BRR(m,P) be the set of the receiver’s best responses, given message m and posterior belief P,

i.e.,14

BRR(m,P) ≡ arg max
ϕ(·|m)∈∆(Y )

∫
Θ

∑
y∈Y

ϕ(y|m)u(θ, y)P(θ|m)dθ (5)

= arg max
α∈[0,1]

∫
Θ
(αu(θ, y1) + (1− α)u(θ, y2))P(θ|m)dθ.

Let V (θ, α) denote the expected utility of type θ when the receiver chooses action y1 with probability

α ∈ [0, 1] defined by:

V (θ, α) ≡ αv(θ, y1) + (1− α)v(θ, y2). (6)

Likewise, let V̄ (θ, ϕ(σ(θ))) denote type θ’s expected utility, given the strategy pair (σ, ϕ) defined

by:

V̄ (θ, ϕ(σ(θ))) ≡
∑
m∈M

∑
y∈Y

v(θ, y)ϕ(y|m)σ(m|θ). (7)

The neologism-proof equilibrium is defined as follows.

Definition 2 Neologism-Proof Equilibrium (Farrell, 1993)

(i) Neologism (d,D) is credible relative to PBE (σ∗, ϕ∗;P∗) if the following conditions hold:

(N0) D /∈ S(σ∗(θ)) for any θ ∈ Θ;15

13To economize notation, a degenerate distribution is simply represented by δ(θ) = m with some abuse of notation.
14If the set of the best responses is a singleton set, then we simply represent it by BRR(m,P) = {yi} with some

abuse of notation.
15This additional condition is needed for our environment because there may not exist appropriate off-the-
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(N1) V (θ, α) > V̄ (θ, ϕ∗(σ∗(θ))) for any θ ∈ D and α ∈ BRR(D,PA); and

(N2) V (θ, α) ≤ V̄ (θ, ϕ∗(σ∗(θ))) for any θ ∈ Θ\D such that D ∈ M(θ) and α ∈ BRR(D,PA).

(ii) A PBE (σ∗, ϕ∗;P∗) is neologism proof if no neologism is credible relative to it.

Intuitively, the credible neologism requires that given a neologism claiming that “my type is in set

D” and the receiver believes that neologism, (i) all types included in deviant type set D have an

incentive to send such a neologism, but (ii) the other types have no incentive.16 The neologism

proofness insists that a PBE that is immune to such credible neologisms is a reasonable consequence,

but it does not work at all in our environment as shown in the following proposition.

Proposition 1 Any PBE is neologism proof.

The ineffectiveness of the neologism proofness comes from the fact that all deviant types must

obtain strictly higher utility from sending a neologism. However, it is a demanding requirement

in our setup. The set of the potentially deviant types must be a subset of Θ12 and Θ21 in any

equilibrium, and such types cannot obtain strictly higher utility if the receiver rationally responds

to neologisms. In other words, there is no credible neologism in our environment. This problem

can be avoided by considering announcement proofness, which is the generalization of neologism

proofness.

Definition 3 Strongly Announcement-Proof Equilibrium (Matthews et al., 1991)

(i) An announcement (m, d) is weakly credible relative to PBE (σ∗, ϕ∗;P∗) if the following con-

ditions hold:

(A0)
(∪

θ∈D S(δ(θ))
)
∩
(∪

θ∈Θ S(σ∗(θ))
)
= ∅;

(A1) min
α∈BRR(m,PA)

V (θ, α) ≥ V̄ (θ, ϕ∗(σ∗(θ))) for any θ ∈ D and m ∈ S(δ(θ)) with the strict

inequality for some θ̂ ∈ D and m̂ ∈ S(δ(θ̂));

(A2) max
α∈BRR(m,PA)

V (θ, α) ≤ V̄ (θ, ϕ∗(σ∗(θ))) for any θ ∈ Θ\D and m ∈ M(θ)∩

( ∪
θ′∈D

S(δ(θ′))

)
;

(A3) min
α∈BRR(m,PA)

V (θ, α) ≥ max
α′∈BRR(m′,PA)

V (θ, α′) for any θ ∈ D and m ∈ S(δ(θ)) and m′ ∈( ∪
θ′∈D

S(δ(θ′))\{m}

)
∩M(θ).

equilibrium-path messages that can be used as neologisms.
16Because of the full certifiability assumption, for any type θ ∈ Θ\D, D /∈ M(θ). Hence, Condition (ii) is vacuously

satisfied.
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(ii) A PBE (σ∗, ϕ∗;P∗) is strongly announcement proof if no announcement is weakly credible

relative to it.

The (strongly) announcement proofness extends the neologism proofness in the sense that the

deviant types could send multiple off-the-equilibrium-path messages.17 Furthermore, it is not nec-

essary that all deviant types obtain a strictly higher utility than the equilibrium utility. Because

of this generalization, the strongly announcement proofness could work well in our environment,

as shown in the following proposition.

Proposition 2

(i) Suppose that Assumptions 1 and 2 hold. Then, U− is the unique informativeness selected by

the strongly announcement proofness.

(ii) Suppose that Assumption 2-(ii) does not hold. Then, there exists no strongly announcement-

proof equilibrium.18

Certain observations are notable. First, the strongly announcement proofness selects the least

informative equilibrium (σ−, ϕ−;P−) because this equilibrium is the best scenario for the sender.

As any type of sender induces his ideal action in equilibrium, no announcement is weakly credi-

ble. Second, while the strongly announcement proofness could work well in our environment, this

selection result is incoherent with the convention of focusing on the fully revealing equilibrium.

That is, if the fully revealing equilibrium exists, then it is trivially the most informative equilib-

rium. However, focusing on the most informative equilibrium is not supported by the strongly

announcement proofness under Assumption 2-(ii). Finally, this selection result does not generally

hold. Without Assumption 2-(ii), equilibrium (σ−, ϕ−;P−) does not exist; that is, there exists type

θ ∈ Θ12 ∪ Θ21 such that ϕ∗(σ∗(θ)) = yR(θ) in any equilibrium. Because such a type can send a

credible announcement, no equilibrium survives.19

4.2 Certifiable dominance

The less informative equilibria are justified by the existing criteria, but they seems unreasonable

in the sense that they are constructed by a sense of dominated strategies. For example, in the
17Notice that the credible neologism is a weakly credible announcement but the converse may not be true. Hence,

the strongly announcement proofness is a refinement of the neologism proofness.
18Matthews et al. (1991) also define the announcement proofness and the weakly announcement proofness, which

are weaker than the strongly announcement proofness. Even if we adopt those weaker versions, the selection results
do not change. The corresponding details are available from the author upon request

19Hedlund (2015) applies the strongly announcement proofness to a model where the sender has to pay a higher
cost if he sends more precise messages. In contrast with our case, the strongly announcement proofness could select
both the fully separating and the fully pooling equilibria.

12



least informative equilibrium (σ−, ϕ−;P−) characterized in Theorem 1, type θ ∈ Θ11 pools with

other types in Θ21. However, such a pooling message is weakly dominated by the fully revealing

message, i.e., m = {θ}, in the following sense. Notice that, on the one hand, the fully revealing

message completely identifies the sender’s type, and then the receiver’s best response is uniquely

determined, namely, y = y1 = yS(θ). On the other hand, the receiver could react to the pooling

message by choosing action y = y2 if she believes that the pooling message is more likely to be

sent by the types in Θ21. This subsection proposes a selection criterion that eliminates equilibria in

which such a dominated message is used, and shows that it uniquely selects the most informative

equilibrium.

We formalize the criterion as follows. Let Σ and Φ be the sets of the sender’s and receiver’s

strategies defined by Σ ≡
{
σ ∈ ∆∗(M)Θ

∣∣ m ∈ M(θ) ∀θ ∈ Θ and m ∈ S(σ(θ))
}
and Φ ≡ ∆(Y )M ,

respectively. For Σ′ ⊆ Σ and Φ′ ⊆ Φ, we say that strategy σ ∈ Σ′ is dominated in Σ′ × Φ′ if there

exists strategy σ′ ∈ Σ′ such that V̄ (θ, ϕ(σ′(θ))) ≥ V̄ (θ, ϕ(σ(θ))) for any θ ∈ Θ and ϕ ∈ Φ′ with

strict inequality for some θ′ ∈ Θ and ϕ′ ∈ Φ′. We define:

ΦC ≡

 ϕ ∈ Φ

∣∣∣∣∣∣ ∀m ∈ M , ϕ(m) ∈ ∆

 ∪
θ∈M−1(m)

{yR(θ)}

 , (8)

and restrict our attention to ΦC when we apply the weak dominance. We then select PBEs that

are supported by “undominated” strategies, in the above sense, of the sender as reasonable ones.

Definition 4 Certifiably Undominated Equilibrium (hereafter, CUE)

(i) The sender’s strategy σ is certifiably undominated if σ is undominated in Σ×ΦC . Let ΣC be

the set of the certifiably undominated strategies of the sender.

(ii) A PBE (σ∗, ϕ∗;P∗) is a CUE if σ∗ ∈ ΣC .

Intuitively, the certifiable dominance is a version of weak dominance that is consistent with

the rationality of the players and the assumption of certifiable states. Because any state is fully

certifiable, the receiver certainly learns that some states never occur after observing a message.

Hence, the rational receiver should never choose actions that are preferred ex post under states

inconsistent with the observed message. For instance, if the receiver observes message m ⊆ Θ11,

then she learns that the true state is in Θ11, and so, choosing action y = y2 with positive probability

cannot be justified as the best response to message m. That is, ΦC is the set of the receiver’s

strategies that are consistent with her rationality and the certification assumption. Because the
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sender knows that the receiver is rational and she understands the literal meaning of the messages,

it seems reasonable to restrict the attention to ΦC when we apply the dominance criterion on the

sender’s strategies. In addition, the weak dominance has no bite in our environment without the

restriction to ΦC ; that is, any strategy σ ∈ Σ is undominated in Σ×Φ. Thus, this restriction can be

regarded as a modification of the weak dominance so that it may have a bite in this environment.

The set of certifiably undominated strategies ΣC is characterized as follows. Define Θ10 ≡

{ θ ∈ Θ | u(θ, y1) > u(θ, y2) and v(θ, y1) = v(θ, y2) }, and Θ20, Θ01, Θ02, and Θ00 are analogously

defined.

Proposition 3

ΣC = Σ̂ ≡


σ ∈ Σ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀m ∈ S(σ(θ)),

m



⊆ Θ11 ∪Θ12 ∪Θ10 if θ ∈ Θ11,

⊆ Θ22 ∪Θ21 ∪Θ20 if θ ∈ Θ22,

∩(Θ22 ∪Θ21 ∪Θ0\Θ10) ̸= ∅ if θ ∈ Θ12,

∩(Θ11 ∪Θ12 ∪Θ0\Θ20) ̸= ∅ if θ ∈ Θ21


. (9)

Intuitively, the certifiably undominated strategies require that (i) types in Θ11 (resp. Θ22) never

sends messages including states in which the receiver weakly prefers action y2 (resp. y1), and (ii)

types in Θ12 (resp. Θ21) must send messages including states in which the receiver weakly prefers

action y2 (resp. y1). We must note the following two points. First, the most informative equilibrium

(σ+, ϕ+;P+) is a CUE. From Proposition 3, it is obvious that σ+ is certifiably undominated.

Hence, the set of CUEs is nonempty. Second, on the other hand, the least informative equilibrium

(σ−, ϕ−;P−) is not a CUE. It is also obvious that σ− is not certifiably undominated because

σ−(θ) ̸⊆ Θ11 ∪ Θ12 ∪ Θ10 for any θ ∈ Θ11. Therefore, as long as we focus on CUEs, we can

successfully eliminate the least informative equilibrium.

It is worthwhile to emphasize that the power of certifiable dominance lies in not only eliminating

the least informative equilibrium, but also eliminating all PBEs except for the most informative

equilibrium. That is, the CUE uniquely selects the most informative equilibrium as a reasonable

prediction of the model. The key insight deriving the uniqueness is that almost every type in the

disagreement regions Θ12 ∪Θ21 should induce the same action in CUEs, as shown in the following

proposition.
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Proposition 4 Suppose that Assumption 1 holds. If (σ∗, ϕ∗;P∗) is a CUE, then E[Ū(θ, ϕ∗(σ∗(θ)))|Θ12∪

Θ21] = maxy∈Y E[u(θ, y)|Θ12 ∪Θ21].

Because types in the agreement regions Θ11 (resp. Θ22) are separated from types in the dis-

agreement regions Θ21 (resp. Θ12) as long as the sender adopts a certifiably undominated strategy,

this property is straightforward if either P (Θ12) = 0 or P (Θ21) = 0. However, this property still

holds even if P (Θ12) > 0 and P (Θ21) > 0. In this scenario, most types in Θ12 (resp. Θ21) should be

pooling with types in Θ21 (resp. Θ21). Furthermore, this property does not depend on Assumption

2-(ii), which is a key condition for the selection by the strongly announcement proofness. Combin-

ing this property with the fact that any type in the agreement regions Θ11 ∪Θ22 induces his ideal

action in any PBE implies the uniqueness in terms of the informativeness.

Theorem 2 Suppose that Assumption 1 holds. Then, U+ is the unique informativeness selected

by CUEs.

Theorem 2 causes us to make the following remarks. First, while the selection result is only

dependent on Assumption 1, it implies that the most informative equilibrium is uniquely selected

with Assumption 2. As we mentioned above, if we either (i) focus on pure strategy equilibria or

(ii) allow mixed strategies with Assumption 2, then U+ is the maximized informativeness. Hence,

we can insist that the CUE uniquely selects the most informative equilibrium. Second, even if

mixed strategies are allowed without Assumption 2, the CUE is still uniquely determined up to the

informativeness. Because it may not be the maximized informativeness in this scenario, the unique

selection of the most informative equilibrium may not be guaranteed. However, PBE (σ+, ϕ+;P+)

is associated with the fully revealing equilibrium if it exists, so we can insist that the fully revealing

equilibrium is the unique CUE up to the informativeness, which is coherent with the convention in

the literature focusing on the fully revealing equilibrium.

4.3 Discussion: connection to rationalizability

The notion of certifiable dominance is closely related to ∆-rationalizability developed by Battigalli

and Siniscalchi (2003). This is an extension of the extensive-form rationalizability by Pearce (1984)

to incomplete information games, in which the players’ first-order beliefs are explicitly restricted

instead of specifying a epistemic type space à la Harsanyi (1967-68). We insist that the same

selection result can be obtained by appropriately restricting beliefs. To ease exposition, we assume

that Θ21 ̸= ∅ throughout this subsection.20

20The other cases are discussed in Appendix B.
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We add the following notation, and, hereafter, focus on pure strategy equilibria following Bat-

tigalli (2006). Let Σ̄ and Φ̄ be the sets of the sender’s and the receiver’s pure strategies defined

by Σ̄ ≡
{
σ ∈ MΘ

∣∣ ∀θ ∈ Θ, σ(θ) ∈ M(θ)
}

and Φ̄ ≡ Y M , respectively. Let µS ∈ ∆(Φ̄) be the

sender’s belief to the receiver’s strategy. The receiver’s belief is represented by a system of con-

ditional probabilities µR ≡
(
µR(∅), (µR(m))m∈M

)
∈ ∆̄(Θ,M) ≡ ∆(Θ × M) × ∆(Θ)M , where

µR(∅) denotes the receiver’s initial belief and µR(m) is a posterior belief over the state space upon

message m that satisfies the following conditions: (i) µR(Θ(m)|m) = 1 for any m ∈ M where

Θ(m) ≡
{
θ ∈ Θ

∣∣ µR(θ,m|∅) > 0
}
, and (ii) for any θ ∈ Θ and m ∈ M , if µR(Θ×{m}|∅) > 0, then

µR(θ|m) = µR(θ,m|∅)/µR(Θ × {m}|∅). Let BRS : Θ ×∆(Φ̄) ⇒ M be the sender’s best response

correspondence defined as follows: for any θ ∈ Θ and µS ∈ ∆(Φ̄),

BRS(θ, µ
S) ≡ arg max

m∈M(θ)

∑
y∈Y

v(θ, y)π(y|m,µS), (10)

where π(y|m,µS) ≡ µS
({

ϕ ∈ Φ̄
∣∣ ϕ(m) = y

})
. With some abuse of notation, denoteBRR(m,µR(m))

as the receiver’s best response correspondence given message m and belief µR, which is defined

analogous to (5) with a restriction to pure strategies. Let ∆ ≡ (∆S ,∆R) represent the explicit re-

strictions on beliefs where ∆S ⊆ ∆(Φ̄) and ∆R ⊆ ∆̄(Θ,M). Define Φ̄i(m) ≡
{
ϕ ∈ Φ̄

∣∣ ϕ(m) = yi
}

for i = 1, 2, and let G(σ) ≡ { (θ,m) ∈ Θ×M | σ(θ) = m } represent the graph of strategy σ.

The procedure of iterative elimination is defined as follows. Given restriction ∆, let Σ0
∆ ≡∪

σ∈Σ̄G(σ) and Φ−1
∆ ≡ Φ̄ be the graph of the sender’s pure strategies and the set of the receiver’s

pure strategy as initial points, respectively. For n ≥ 1, Θ2n−1
∆ , Φ2n−1

∆ , and Σ2n
∆ are recursively

defined as follows:21

Θ2n−1
∆ (m) ≡

{
θ ∈ Θ

∣∣ (θ,m) ∈ Σ2n−2
∆

}
, (11)

Φ2n−1
∆ ≡

 ϕ ∈ Φ2n−3
∆

∣∣∣∣∣∣∣∣∣
∃µR ∈ ∆R such that:

(i) ∀m ∈ M, ϕ(m) ∈ BRR(m,µR(m)); and

(ii) if Θ2n−1
∆ (m) ̸= ∅, then µR

(
Θ2n−1

∆ (m)|m
)
= 1

 , (12)

Σ2n
∆ ≡

 (θ,m) ∈ Σ2n−2
∆

∣∣∣∣∣∣ ∃µS ∈ ∆S such that:

(i) m ∈ BRS(θ, µ
S); and (ii) µS

(
Φ2n−1
∆

)
= 1

 . (13)

Finally, define Σ∗
∆ ≡ Σ∞

∆ and Φ∗
∆ ≡ Φ∞

∆ .

21Because of the structure of signaling games, the receiver’s (resp. sender’s) strategies are eliminated only in odd
(resp. even) rounds.
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Definition 5 ∆-rationalizability (Battigalli and Siniscalchi, 2003; Battigalli, 2006)

A strategy pair (σ, ϕ) is ∆-rationalizable if it satisfies the following conditions: (i) G(σ) ⊆ Σ∗
∆, and

(ii) ϕ ∈ Φ∗
∆.

Intuitively, ∆-rationalizable strategies are the strategies that survive after the iterative elim-

inations of strategies that are not supported as the best response when the players have beliefs

consistent with restrictions ∆. We define desirable restrictions ∆ as follows:

∆S ≡

 µS ∈ ∆(Φ̄)

∣∣∣∣∣∣ (i) if m ∩Θ11 ̸= ∅ and m ∩Θ21 ̸= ∅, then µS
(
Φ̄2(m)

)
> 0,

(ii) if m ∩Θ22 ̸= ∅ and m ∩Θ12 ̸= ∅, then µS
(
Φ̄1(m)

)
> 0

 , (14)

∆R ≡ ∆̄(Θ,M). (15)

While the receiver’s beliefs are not restricted, we assume that the sender certainly believes that

the receiver is “skeptical,” in the sense that if she observes a message that is available to the types

in both the agreement and the disagreement regions, then she never excludes possibilities of the

disagreement types having sent the message. The restrictions guarantee the unique selection, like

the certifiable dominance, as shown in the following theorem.

Theorem 3 U+ is the unique informativeness supported by PBEs constructed by the ∆-rationalizable

strategies with restrictions (14) and (15).

Although ∆-rationalizability can uniquely select informativeness U+, the desirable result is

sensitive to restrictions on beliefs. For example, suppose that the players’ beliefs are never restricted;

that is, ∆S = ∆
(
Φ̄
)
and ∆R = ∆̄(Θ,M). Even if we do not put any restrictions on the receiver’s

beliefs, the receiver’s rationality and the certifiability assumption eliminate strategies not included

in ΦC . However, we cannot exclude the possibility of types in the agreement region Θ11 (resp.

Θ22) pooling with the types in the disagreement region Θ21 (resp. Θ12) because such behaviors are

weakly, but not strictly, dominated. As a result, the unique selection is no longer guaranteed. In

particular, restrictions to the sender’s beliefs are necessary for eliminating such pooling behaviors as

long as Θ12 ̸= ∅ and Θ21 ̸= ∅. Consider the scenario where only the receiver’s beliefs are restricted;

for example, suppose that the receiver’s beliefs are skeptical à la Milgrom and Roberts (1986), as

follows:

∆R =

 µR ∈ ∆̄(Θ,M)

∣∣∣∣∣∣ if m ∩Θ11 ̸= ∅ and m ∩Θ21 ̸= ∅,

then µR(Θ11 ∪Θ12|m) < µR(Θ22 ∪Θ21|m)

 . (16)
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Under this restriction, the types in Θ11 are never pooling with the types in Θ21. However, we

cannot prevent the types in Θ22 from pooling with the types in Θ12 because sending message m′

such that m′ ∩ Θ11 ̸= ∅, m′ ∩ Θ21 ̸= ∅, m′ ∩ Θ22 ̸= ∅, and m′ ∩ Θ12 ̸= ∅ induces the ideal action

y2 for the types in Θ22 ∪Θ12.
22 Thus, we have to carefully restrict beliefs for obtaining the unique

selection, but there might be room for discussion about whether the appropriate restrictions are

reasonable.23

5 Extension: Partially Certifiable States

In this section, we discuss whether the unique selection of the most informative equilibrium by

CUEs can be extended to the scenario where the states are partially certifiable. In contrast with

the full certification environment, there are several reasonable certification structures that induce

different equilibria. Hence, we restrict our attention to the environment described by Lanzi and

Mathis (2008), and show that the most informative equilibrium is uniquely selected.

The baseline model is modified as follows. We define M ≡ Θ, and the set of available messages

is defined by M(θ) ≡ {m ∈ Θ | m ≤ θ }. Notice that under this modification, the certifiability of

states is limited, in the sense that while any type can certify the lower bound of his type, he cannot

certify the upper bound.24 We assume the following conditions for utility functions.

Assumption 3

(i) Both u and v are continuous in θ for any y ∈ Y .

(ii) Both u(·, y1) and v(·, y1) are strictly decreasing in θ, and both u(·, y2) and v(·, y2) are strictly

increasing in θ.

(iii) u(0, y1) > u(0, y2) and u(1, y1) < u(1, y2).

(iv) v(0, y1) > v(0, y2) and v(1, y1) < v(1, y2).

By Assumption 3, there exists a unique θR ∈ Θ such that u(θR, y1) = u(θR, y2), and θS can be

defined analogously. Hence, dependent on the locations of θR and θS , either Θ12 = ∅ or Θ21 = ∅
22If either Θ12 = ∅ or Θ21 = ∅, then the restriction to the skeptical beliefs guarantees the unique selection, as in

Proposition 3 of Battigalli (2006). The details appear in Appendix B.
23If we adopt an extensive-form analogous of iterative admissibility, called prudent rationalizability à la Heifetz et

al. (2011), then we can also obtain the unique selection by the same argument. The details for the same are available
from the author upon request. While Brandenburger et al. (2008) provide an epistemic foundation for iterative
admissibility in finite games, its application to infinite games remains an open question.

24While Lanzi and Mathis (2008) study a finite game, their results can be easily extended to the infinite game
explored in this paper.
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Figure 1: Distribution of Preferences: Case 1 (left) and Case 2 (right)

holds, as shown in Figure 1. To ease reference, the former (i.e., θR < θS) and the latter (i.e.,

θR ≥ θS) are called Case 1 and Case 2, respectively. Finally, we assume the following additional

conditions to guarantee that multiple equilibria exist.

Assumption 4

(i) E[u(θ, y1)] ≤ E[u(θ, y2)].

(ii) E[u(θ, y1)|Θ11 ∪Θ21] > E[u(θ, y2)|Θ11 ∪Θ21].

(iii) E[u(θ, y1)|Θ12 ∪Θ22] < E[u(θ, y2)|Θ12 ∪Θ22].

Except for this modification, the setup is identical to that in the baseline model. The following

terminology is also introduced. We say that PBE (σ∗, ϕ∗;P∗) is a fully pooling equilibrium if

σ∗(θ) = 0 for any θ ∈ Θ. Likewise, we say that PBE (σ∗, ϕ∗;P∗) is a two-partition equilibrium with

cutoff θ∗ if:

σ∗(θ) =

 θ∗ if θ ≥ θ∗,

0 otherwise.
(17)

Let U∗ represent the informativeness of the most informative equilibrium in this environment.

Lanzi and Mathis (2008) show that there exist multiple PBEs under Assumptions 3 and 4.

In Case 1, there exist the fully pooling equilibrium and the two-partition equilibrium with cutoff

θS . In Case 2, there exist the fully pooling equilibrium, the fully revealing equilibrium, and the

two-partition equilibrium with cutoff θ∗ for any θ∗ ∈ [θS , θR). Furthermore, with additional as-

sumptions, there also exist PBEs in which the equilibrium outcomes are nonmonotonic. Although

there exist multiple PBEs, CUEs uniquely select the most informative equilibrium as shown in the

following theorem.

Theorem 4 Consider the partially certifiable model with Assumptions 3 and 4. Then, U∗ is the

unique informativeness supported by CUEs.
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Intuitively, CUEs require that the types in agreement region Θ22 are never pooling with the

types in Θ11 ∪Θ12 ∪Θ21. In this environment, ΦC is simplified as follows:

ΦC =
{
ϕ ∈ Φ

∣∣ S(ϕ(m)) = {y2} if m > θR
}
. (18)

Hence, for any type in agreement region Θ22, a strategy sending message m ≤ θR with positive

probability is certifiably dominated. As a result, only the two-partition equilibrium with cutoff θS

and the fully revealing equilibrium can be supported as CUEs in Cases 1 and 2, respectively, and

these are the most informative equilibria in the respective cases.

6 Conclusion

This paper discussed equilibrium selection in persuasion games with binary actions. There exist

multiple equilibria in this environment, but the literature conventionally focus on the most infor-

mative equilibrium without formal justification. We demonstrated that the well-known existing

criteria in costly signaling and cheap-talk games are useless for justifying such a convention. In

particular, the announcement proofness could uniquely select the least informative equilibrium,

which is incoherent with the convention. We then proposed a notion of certifiable dominance. Cer-

tifiably undominated strategies can be understood as the ∆-rationalizable strategies with additional

restrictions on the sender’s beliefs. We showed that the most informative equilibrium is uniquely

supported by CUEs, which is consistent with the convention. It is worthwhile to emphasize that

this result is irrelevant to the existence of the fully revealing equilibrium. Furthermore, the CUE

could uniquely select the most informative equilibrium even if the sender’s private information is

partially certifiable.

While we have restricted our attention to persuasion games with binary actions so far, it is

nontrivial to extend the results to the environment where the receiver has more than two actions

in the following sense. First, the justification by ∆-rationalizability seems more useful than that

by the certifiable dominance in this extension, but it is not clear as to what kind of additional

restrictions on beliefs are needed and whether those restrictions are reasonable. Second, while

Forges and Koessler (2008) provide the most comprehensive characterization of equilibrium set,

because of the cost of its generality, it is hard to observe the pooling structure of each equilibrium

in their characterization. Hence, the direct application of our arguments is difficult. This matter

may be explored in detail in the future.
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Appendix A: Proofs

A.1 Preliminaries

First, we show Lemma 1, which is frequently used in the following proofs.

Lemma 1 (Lemma 1 of Miura (2014))

In any PBE (σ∗, ϕ∗;P∗), ϕ∗(m) = yR(θ) for any θ ∈ Θ11 ∪Θ22 and m ∈ S(σ∗(θ)).

Proof. Suppose, in contrast, that there exists PBE (σ∗, ϕ∗;P∗) with type θ ∈ Θ11 ∪Θ22 such that

ϕ∗(m) ̸= yR(θ) for some m ∈ S(σ∗(θ)). Because of the optimality of σ∗, {θ} /∈ S(σ∗(θ)). However,

type θ’s ideal action is yR(θ), and it is induced by sending message m = {θ}. That is, the sender

has an incentive to deviate, which is a contradiction. ■
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A.2 Proof of Proposition 1

Suppose, in contrast, that there exists PBE (σ∗, ϕ∗;P∗) that is not neologism proof. That is, there

exists credible neologism (d,D). By Lemma 1, D ∩ (Θ11 ∪ Θ22 ∪ Θ00 ∪ Θ10 ∪ Θ20) = ∅ should

hold; otherwise, Condition (N1) is violated. Next, suppose, in contrast, that D ⊆ Θ01 ∪ Θ02.

Without loss of generality, assume that there exists θ′ ∈ D∩Θ01. By construction, we can say that

BRR(D,PA) = [0, 1]. However, for α = 0 ∈ BRR(D,PA), V (θ′, 0) = v(θ′, y2) ≤ V̄ (θ′, ϕ∗(σ∗(θ′))),

which contradicts Condition (N1). Thus, D ∩ (Θ12 ∪Θ21) ̸= ∅. Furthermore, suppose, in contrast,

that D ∩Θ12 ̸= ∅ and D ∩Θ21 ̸= ∅. If BRR(D,PA) = {y1}, then for type θ′ ∈ D ∩Θ12, Condition

(N1) is violated, which is a contradiction. Likewise, we can derive a contradiction for the scenario

BRR(D,PA) = {y2} and [0, 1]. Thus, we can say that either D ∩ Θ12 = ∅ or D ∩ Θ21 = ∅ should

hold. We then assume that D ∩Θ12 ̸= ∅ and D ∩Θ21 = ∅ without loss of generality, which implies

that BRR(D,PA) = {y1}. However, for type θ′ ∈ D ∩Θ12, V (θ′, 1) = v(θ′, y1) ≤ V̄ (θ′, ϕ∗(σ∗(θ′))),

which is a contradiction to Condition (N1). Therefore, such a credible neologism never exists. ■

A.3 Proof of Proposition 2

(i) (Existence) It is straightforward that the least informative equilibrium (σ−, ϕ−;P−) is the best

equilibrium for the sender. Hence, by Proposition 6.1 of Matthews et al. (1991), it is strongly

announcement proof.

(Uniqueness) Let (σ∗, ϕ∗;P∗) be a PBE whose informativeness is U ̸= U−. By Lemma 1 and

Assumption 1-(i), there exists subset X ⊆ Θ12 ∪ Θ21 such that P (X) > 0, and for any θ ∈ X,

there exists message m ∈ S(σ∗(θ)) such that ϕ∗(m) ̸= yS(θ). Without loss of generality, assume

that P (X ∩Θ12) > 0. Because of the finiteness of S(σ∗(θ)) for any θ and Assumption 2-(ii), there

exists off-the-equilibrium-path message D such that (i) D ∩ (X ∩ Θ12) ̸= ∅, (ii) D ∪ Θ22 ̸= ∅, and

(iii) E[u(θ, y1)|D] ≤ E[u(θ, y2)|D]. Now, we consider the following announcement:

• The set of the deviant types is D,

• δ(θ) = D for any θ ∈ D, and

• d = (δ,D) and a = (D, d).

Notice that BRR(D,PA) = {y2}. We show that this is a weakly credible announcement relative to

(σ∗, ϕ∗;P∗). First, because action y2 is the ideal action for any type in D, and types in D∩(X∩Θ12)

obtain the strictly higher utility under this announcement, Condition (A1) holds. Second, Condition

(A2) is vacuously true because message D /∈ M(θ) for any θ ∈ Θ\D. Finally, Condition (A3) is
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trivially satisfied because the talking strategy is a constant function. Then, equilibrium (σ∗, ϕ∗;P∗)

is not strongly announcement proof.

(ii) Without Assumption 2-(ii), a PBE whose informativeness is U− never exists. Hence, us-

ing the similar argument as in the proof of (i), we can conclude that no equilibrium is strongly

announcement proof. ■

A.4 Proof of Proposition 3

(ΣC ⊆ Σ̂) Suppose, in contrast, that there exists strategy σ ∈ ΣC such that σ /∈ Σ̂.

Case 1: There exists θ′ ∈ Θ11 and m′ ∈ S(σ(θ′)) such that m′ ̸⊆ Θ11 ∪Θ12 ∪Θ10.

In this scenario, m′ ∩ (Θ22 ∪ Θ21 ∪ Θ0\Θ10) ̸= ∅. Hence, there exists strategy ϕ′ ∈ ΦC such

that ϕ′(m′) = y2. Now, we consider the following strategy σ′ ∈ Σ defined by:

σ′(θ) ≡

 {θ′} if θ = θ′,

σ(θ) otherwise.
(A.1)

Notice that ϕ(σ′(θ′)) = y1 = yS(θ′) holds for any ϕ ∈ ΦC . Hence, V̄ (θ, ϕ(σ′(θ))) ≥

V̄ (θ, ϕ(σ(θ))) for any θ ∈ Θ and ϕ ∈ ΦC with strict inequality for θ′ and ϕ′ ∈ ΦC , which

contradicts σ ∈ ΣC . Therefore, m ⊆ Θ11 ∪Θ12 ∪Θ10 holds for any θ ∈ Θ11 and m ∈ S(σ(θ)).

Likewise, we can show that m ⊆ Θ22 ∪Θ21 ∪Θ20 holds for any θ ∈ Θ22 and m ∈ S(σ(θ)).

Case 2: There exists θ′ ∈ Θ12 and m′ ∈ S(σ(θ′)) such that m′ ⊆ Θ11 ∪Θ12 ∪Θ10.

Notice that ϕ(m′) = y1 for any ϕ ∈ ΦC . Now, we consider the following strategy σ′ ∈ Σ

defined by:

σ′(θ) ≡

 {θ′} ∪Θ22 if θ = θ′,

σ(θ) otherwise.
(A.2)

By construction, there exists strategy ϕ′ ∈ ΦC such that ϕ′(σ′(θ′)) = y2. Hence, V̄ (θ, ϕ(σ′(θ))) ≥

V̄ (θ, ϕ(σ(θ))) holds for any θ ∈ Θ and ϕ ∈ ΦC with strict inequality for θ′ ∈ Θ and ϕ′ ∈ ΦC ,

which contradicts σ ∈ ΣC . Therefore, m ∩ (Θ22 ∪ Θ21 ∪ Θ0\Θ10) ̸= ∅ for any θ ∈ Θ12 and

m ∈ S(σ(θ)). Likewise, we can show that m∩ (Θ11∪Θ12∪Θ0\Θ20) ̸= ∅ holds for any θ ∈ Θ21

and m ∈ S(σ(θ)).

(ΣC ⊇ Σ̂) Suppose, in contrast, that there exists strategy σ ∈ Σ̂ such that σ /∈ ΣC . That

is, there exists strategy σ′ ∈ Σ such that (i) V̄ (θ, ϕ(σ′(θ))) ≥ V̄ (θ, ϕ(σ(θ))) for any θ ∈ Θ and
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ϕ ∈ ΦC , and (ii) V̄ (θ′, ϕ′(σ′(θ′))) > V̄ (θ′, ϕ′(σ(θ′))) for some θ′ ∈ Θ and ϕ′ ∈ ΦC . It is obvious that

θ′ /∈ Θ0\(Θ01 ∪Θ02) because of Condition (ii).

Case 1: θ′ ∈ Θ11 ∪Θ22.

Because σ ∈ Σ̂, ϕ(m) = yS(θ′) holds for any ϕ ∈ ΦC and m ∈ S(σ(θ′)), which contradicts

Condition (ii).

Case 2: θ′ ∈ Θ12 ∪Θ21.

Without loss of generality, we assume that θ′ ∈ Θ12. Because σ ∈ Σ̂ and σ ̸= σ′, there

exists m′ ∈ S(σ(θ′)) such that m′ ∩ (Θ22 ∪ Θ21 ∪ Θ0\Θ10) ̸= ∅ and σ(m′|θ′) > σ′(m′|θ′).

Also, θ′ ∈ m for any m ∈ S(σ′(θ′)). Hence, there exists strategy ϕ′ ∈ ΦC such that (i)

ϕ′(m) = y1 for any m ∈ S(σ′(θ′))\{m′}, and (ii) ϕ′(m′) = y2. However, it implies that

V̄ (θ′, ϕ′(σ(θ′))) > V̄ (θ′, ϕ′(σ′(θ′))), which contradicts Condition (i). Likewise, using the simi-

lar argument adopted here, we can derive a contradiction for the scenario where θ′ ∈ Θ01∪Θ02.

■

A.5 Proof of Proposition 4

A.5.1 Preliminaries

Without loss of generality, assume that {y1} = argmaxy∈Y E[u(θ, y)|Θ12 ∪ Θ21]. It is worthwhile

to notice that if either P (Θ12) = 0 or P (Θ21) = 0, then the proposition trivially holds. Hence,

hereafter, we assume that P (Θ12) ̸= ∅ and P (Θ21) ̸= ∅. First, we show the following lemma.

Lemma 2 If (σ∗, ϕ∗;P∗) is a CUE, then either one of the following conditions holds:

(i) ϕ∗(m) = y2 for any θ ∈ Θ12 and m ∈ S(σ∗(θ)), or

(ii) ϕ∗(m) = y1 for any θ ∈ Θ21 and m ∈ S(σ∗(θ)).

Proof of Lemma 2. Suppose, in contrast, that there exists CUE (σ∗, ϕ∗;P∗), where there exist

θ ∈ Θ12 and θ′ ∈ Θ21 such that ϕ∗(m) ̸= y2 and ϕ∗(m′) ̸= y1 for some m ∈ S(σ∗(θ)) and

m′ ∈ S(σ∗(θ′)). The following two cases should be checked.

Case 1: Either ϕ∗(m) or ϕ∗(m′) is a degenerate distribution.

Without loss of generality, assume that ϕ∗(m) = y1 and ϕ∗(y1|m′) ∈ [0, 1). To hold this

equilibrium, it is necessary that ϕ∗(m̃) = y1 for any m̃ ∈ M(θ); otherwise, type θ never

sends message m with positive probability. Hence, it implies that ϕ∗(m̂) = y1 for m̂ ≡ {θ, θ′}.

26



Notice that because ϕ∗(y1|m′) < 1 and m′ ∈ S(σ∗(θ′)), ϕ∗(y1|m′′) < 1 for any m′′ ∈ S(σ∗(θ′));

that is, m̂ /∈ S(σ∗(θ′)). However, because m̂ ∈ M(θ′), type θ′ has an incentive to deviate

from σ∗(θ′), which is a contradiction.

Case 2: Both ϕ∗(m) and ϕ∗(m′) are nondegenerate distributions.

First, notice that if there exists θ′′ ∈ Θ12 such that ϕ∗(m′′) = y1 for somem′′ ∈ S(σ∗(θ′′)), then

we can derive a contradiction using the similar argument as in Case 1. Hence, ϕ∗(y1|m′′) ∈

[0, 1) should hold for any θ′′ ∈ Θ12 and m′′ ∈ S(σ∗(θ′′)). Because σ∗ ∈ ΣC , it is necessary

that for almost every θ′′ ∈ Θ12 and any m′′ ∈ S(σ∗(θ′′)), there exists θ̄ ∈ Θ21 such that

m′′ ∈ S(σ∗(θ̄)). Likewise, using the similar argument, we can insist that (i) ϕ∗(y1|m′′′) ∈

(0, 1] for any θ′′′ ∈ Θ21 and m′′′ ∈ S(σ∗(θ′′′)), and (ii) for almost every θ′′′ ∈ Θ21 and any

m′′′ ∈ S(σ∗(θ′′′)), there exists θ̂ ∈ Θ12 such that m′′′ ∈ S(σ∗(θ̂)). Define:

M∗
D ≡

{
m ∈ M

∣∣ ∃θ′′ ∈ Θ12 and θ′′′ ∈ Θ21 such that m ∈ S(σ∗(θ′′)) ∩ S(σ∗(θ′′′))
}
. (A.3)

Without loss of generality, assume that M∗
D is countable. It is worthwhile to remark that (i)

m∗ ∈ M∗
D for almost every θ̃ ∈ Θ12 ∪ Θ21 and any m∗ ∈ S(σ∗(θ̃)), (ii) m∗ /∈ S(σ∗(θ̃)) for

any m∗ ∈ M∗
D and θ̃ ∈ Θ11 ∪Θ22, and (iii) ϕ∗(y1|m∗) ∈ (0, 1) for any m∗ ∈ M∗

D. Because of

Property (iii) of M∗
D, for any m∗ ∈ M∗

D:

EP∗(m∗)[u(θ, y1)]Pr(m
∗|Θ12 ∪Θ21) = EP∗(m∗)[u(θ, y2)]Pr(m

∗|Θ12 ∪Θ21), (A.4)

where for T ⊆ Θ and m ∈ M :

Pr(m|T ) ≡ 1

P (T )

∫
T
σ∗(m|θ)f(θ)dθ. (A.5)

By summing up both sides of (A.4) for m∗ ∈ M∗
D, we can obtain that E[u(θ, y1)|Θ12 ∪

Θ21] = E[u(θ, y2)|Θ12∪Θ21] because of Properties (i) and (ii) of M∗
D. However, it contradicts

Assumption 1-(ii). ■

A.5.1 Proof of Proposition 4

Suppose, in contrast, that there exists CUE (σ∗, ϕ∗;P∗) such that E[Ū(θ, ϕ∗(σ∗(θ)))|Θ12 ∪Θ21] ̸=

E[u(θ, y1)|Θ12 ∪Θ21]. We define Θ∗ ≡ { θ ∈ Θ12 ∪Θ21 | ∀m ∈ S(σ∗(θ)), ϕ∗(m) = y2 }.

Lemma 3 P (Θ∗) > 0.
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Proof of Lemma 3. First, notice that if the receiver randomizes actions upon message m, then

EP∗(m)[u(θ, y1)] = EP∗(m)[u(θ, y2)] should hold. Hence, to guarantee the hypothesis, it is necessary

that P (Θ∗∗) > 0, where Θ∗∗ ≡ { θ ∈ Θ12 ∪Θ21 | ∃m ∈ S(σ∗(θ)) such that ϕ∗(m) = y2 }. It remains

to show that subset Θ∗ ⊆ Θ∗∗ also has a positive measure. If Condition (i) of Lemma 2 holds,

then Θ12 ⊆ Θ∗. That is, P (Θ∗) > 0 because P (Θ12) > 0. If Condition (ii) of Lemma 2 holds,

then Θ∗∗ ⊆ Θ12. That is, because yS(θ∗∗) = y2 for any θ∗∗ ∈ Θ∗∗, if there exists message m∗∗ ∈

S(σ∗(θ∗∗)) such that ϕ∗(m∗∗) = y2, then ϕ∗(m) = y2 for any m ∈ S(σ∗(θ∗∗)). Therefore, we can

conclude that Θ∗∗ = Θ∗, which implies that P (Θ∗) > 0. □
The following cases are to be checked.

Case 1: Θ∗ ⊆ Θ21.

In this scenario, there exist θ ∈ Θ12 and θ′ ∈ Θ∗ such that ϕ∗(m) ̸= y2 for some m ∈ S(σ∗(θ))

and ϕ∗(m′) ̸= y1 for some m′ ∈ S(σ∗(θ′)), which is a contradiction to Lemma 2.

Case 2: Θ∗ ⊆ Θ12.

Lemma 4 There exist θ ∈ Θ∗ and θ′ ∈ Θ21 such that S(σ∗(θ)) ∩ S(σ∗(θ′)) ̸= ∅.

Proof of Lemma 4. Suppose, in contrast, that for any θ ∈ Θ∗ and θ′ ∈ Θ21, S(σ∗(θ)) ∩

S(σ∗(θ′)) = ∅. Because σ∗ ∈ ΣC , it is necessary that for any θ∗ and m ∈ S(σ∗(θ)), there

exists θ′ ∈ Θ20 such that m ∈ S(σ∗(θ′)). We define:

M∗ ≡
{
m ∈ M

∣∣ ∃θ ∈ Θ∗ and θ′ ∈ Θ20 such that m ∈ S(σ∗(θ)) ∩ S(σ∗(θ′))
}
. (A.6)

Without loss of generality, M∗ is assumed to be countable. Notice that (i) m∗ ∈ M∗ for any

θ ∈ Θ∗ and m∗ ∈ S(σ∗(θ∗)), (ii) m∗ /∈ S(σ∗(θ)) for any m∗ ∈ M∗ and θ ∈ Θ11 ∪ Θ22 ∪ Θ21,

and (iii) ϕ∗(m∗) = y2 for any m∗ ∈ M∗. Because of Property (iii) of M∗, for any m∗ ∈ M∗:

EP∗(m∗)[u(θ, y1)]Pr(m
∗|Θ∗ ∪Θ20) ≤ EP∗(m∗)[u(θ, y2)]Pr(m

∗|Θ∗ ∪Θ20). (A.7)

By summing up both sides of (A.7) for any m∗ ∈ M∗, we obtain that E[u(θ, y1)|Θ∗] ≤

E[u(θ, y1)|Θ∗] because of Properties (i), (ii), and Assumption 1-(i). However, this contradicts

Θ∗ ⊆ Θ12. □

By Lemma 4, there exists message m ∈ S(σ∗(θ)) ∩ S(σ∗(θ′)) for some θ ∈ Θ∗ and θ′ ∈ Θ21

such that ϕ∗(m) = y2. However, to hold equilibrium, it is necessary that ϕ∗(m′) = y2 for
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any m′ ∈ M(θ′); otherwise, type θ′ deviates. That is, θ′ ∈ Θ∗, which is a contradiction to

Θ∗ ⊆ Θ12.

Case 3: Θ∗ ∩Θ12 ̸= ∅ and Θ∗ ∩Θ21 ̸= ∅.

Because Θ∗
21 ≡ Θ∗∩Θ21 ̸= ∅, by Lemma 2, Θ12 ⊆ Θ∗ should hold. Now, suppose, in contrast,

that P (Θ21\Θ∗
21) > 0. For any θ ∈ Θ21\Θ∗

21, there exists message m ∈ S(σ∗(θ)) such that

ϕ∗(m) ̸= y2. Hence, by the optimality of σ∗, ϕ∗(m′) ̸= y2 for any m′ ∈ S(σ∗(θ)). Because

σ∗ ∈ ΣC and P (Θ21\Θ∗
21) > 0, using the similar argument as that in the proof of Lemma 4,

there exists message m′′ ∈ S(σ∗(θ))∩S(σ∗(θ′)) for some θ ∈ Θ21\Θ∗
21 and θ′ ∈ Θ12. However,

because Θ12 ⊆ Θ∗, ϕ∗(m′′) = y2 must hold, which is a contradiction. Therefore, we can

conclude that P (Θ21\Θ∗
21) = 0, which implies that P (Θ∗) = P (Θ12 ∪ Θ21). Now, define

Θ̄21 ≡ { θ ∈ Θ21 | ∃m ∈ S(σ∗(θ)) ∩ S(σ∗(θ′)) for some θ′ ∈ Θ22 }, and:

M∗∗ ≡
{
m ∈ M

∣∣ ∃θ ∈ Θ∗\Θ̄21 such that m ∈ S(σ∗(θ))
}
. (A.8)

Without loss of generality, assume that M∗∗ is countable. Notice that (i) m∗∗ ∈ M∗∗ for

almost every θ ∈ Θ12 ∪ (Θ21\Θ̄21) and any m ∈ S(σ∗(θ)), (ii) m∗∗ /∈ S(σ∗(θ)) for any

m∗∗ ∈ M∗∗ and θ ∈ Θ11 ∪ Θ22, and (iii) ϕ∗(m∗∗) = y2 for any m∗∗ ∈ M∗∗. Because of

Property (iii) of M∗∗, for any m∗∗ ∈ M∗∗:

EP∗(m∗∗)[u(θ, y1)]Pr(m
∗∗|Θ∗\Θ̄21) ≤ EP∗(m∗∗)[u(θ, y2)]Pr(m

∗∗|Θ∗\Θ̄21). (A.9)

By summing up both sides of (A.9) form∗∗ ∈ M∗∗, we obtain E[u(θ, y1)|Θ∗\Θ̄21] ≤ E[u(θ, y2)|Θ∗\Θ̄21]

because of Properties (i) and (ii) of M∗∗. Because P (Θ∗\Θ̄21) = P (Θ12 ∪ (Θ21\Θ̄21)),

E[u(θ, y1)|Θ12∪(Θ21\Θ̄21)] ≤ E[u(θ, y2)|Θ12∪(Θ21\Θ̄21)] holds, which implies that E[u(θ, y1)|Θ12∪

Θ21] ≤ E[u(θ, y2)|Θ12 ∪ Θ21]. However, this contradicts {y1} = argmaxy∈Y E[u(θ, y)|Θ12 ∪

Θ21]. ■

A.6 Proof of Theorem 2

First, by Proposition 3, it is obvious that σ+ ∈ ΣC , and then U+ is supported by a CUE. We

now need to show the uniqueness. Suppose, in contrast, that there exists CUE (σ∗, ϕ∗;P∗) such

that E[Ū(θ, ϕ∗(σ∗(θ)))] ̸= U+. By Lemma 1 and Proposition 3, ϕ∗(m) = yR(θ) holds for any

θ ∈ Θ11 ∪ Θ22 and m ∈ S(σ∗(θ)) in any CUE. Hence, it should hold that E[Ū(θ, ϕ∗(σ∗(θ)))|Θ12 ∪

Θ21] ̸= E[Ū(θ, ϕ+(σ+(θ)))|Θ12 ∪Θ21]. However, it is a contradiction to Proposition 4. ■
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A.7 Proof of Theorem 3

A.7.1 Preliminaries

We introduce the following additional notation:

Φ̄C ≡ Φ̄ ∩ ΦC , (A.10)

G∆ ≡


(θ,m) ∈ Σ0

∆

∣∣∣∣∣∣∣∣∣∣∣∣
m ∩



Θ21 = ∅ if θ ∈ Θ11,

Θ12 = ∅ if θ ∈ Θ22,

Θ22 ∪Θ21 ∪Θ0\Θ10 ̸= ∅ if θ ∈ Θ12,

Θ11 ∩Θ12 ∪Θ0\Θ20 ̸= ∅ if θ ∈ Θ21


, (A.11)

M∆ ≡
{
m ∈ M

∣∣ ∃θ, θ′ ∈ m such that yR(θ) ̸= yR(θ′)
}
. (A.12)

Proposition 5 Φ1
∆ = Φ̄C .

Proof. (Φ1
∆ ⊆ Φ̄C) Suppose, in contrast, that there exists ϕ ∈ Φ1

∆ such that ϕ /∈ Φ̄C . That is,

there exists message m ∈ M such that ϕ(m) /∈
∪

θ∈m{yR(θ)}. If m /∈ M∆, then
∪

θ∈m{yR(θ)} = Y ,

which is a contradiction to ϕ(m) ∈ Y . Hence, without loss of generality, we assume that yR(θ) =

yR(θ′) = y1 for any θ, θ′ ∈ m. That is, ϕ(m) = y2. However, because Θ1
∆(m) = m for any

m ∈ M , BRR(m,µR(m)) = {y1} should hold for any µR ∈ ∆R such that µR
(
Θ1

∆(m)|m
)
= 1,

which contradicts ϕ ∈ Φ1
∆.

(Φ1
∆ ⊇ Φ̄C) We fix ϕ ∈ Φ̄C arbitrarily. If m /∈ M∆, then we can show that ϕ ∈ Φ1

∆ by the same

argument used in the necessary part. We then suppose that m ∈ M∆. Because Θ1
∆(m) = m for

any m ∈ M , there exist θ, θ′ ∈ Θ1
∆(m) such that yR(θ) = y1 and yR(θ′) = y2. Hence, there exist

beliefs µR, µR′ ∈ ∆R such that µR(θ|m) = 1 and µR′
(θ′|m) = 1. Then, BRR(m,µR(m)) = {y1}

and BRR(m,µR′
(m)) = {y2} holds. Therefore, we can say that ϕ ∈ Φ1

∆. ■

Proposition 6 Σ2
∆ = G∆.

Proof. (Σ2
∆ ⊆ G∆) Suppose, in contrast, that there exists (θ,m) ∈ Σ2

∆ such that (θ,m) /∈ G∆.

Case 1: θ ∈ Θ11 ∪Θ22.

Without loss of generality, we assume that θ ∈ Θ11. That is, m∩Θ21 ̸= ∅. By Proposition 5,

there exists ϕ ∈ Φ1
∆ such that ϕ(m) = y2. Hence, for any µS ∈ ∆S such that µS

(
Φ1
∆

)
= 1,∑

y∈Y v(θ, y)π(y|m,µS) < v(θ, y1). However, if type θ sends message m′ ≡ {θ}, then ϕ(m) =

y1 for any ϕ ∈ Φ1
∆ by Proposition 5. That is, for any µS ∈ ∆S such that µS

(
Φ1
∆

)
= 1,

30



∑
y∈Y v(θ, y)π(y|m′, µS) = v(θ, y1) holds, which is a contradiction to (θ,m) ∈ Σ2

∆. Likewise,

we can derive a contradiction for θ ∈ Θ22 by the similar argument.

Case 2: θ ∈ Θ12 ∪Θ21.

Without loss of generality, we assume that θ ∈ Θ12. That is, m ⊆ Θ11 ∪ Θ12 ∪ Θ10. By

Proposition 5, ϕ(m) = y1 holds for any ϕ ∈ Φ1
∆. Hence, for any µS ∈ ∆S such that µS

(
Φ1
∆

)
=

1,
∑

y∈Y v(θ, y)π(y|m,µS) = v(θ, y1). However, suppose that type θ sends messagem′ ∈ M(θ)

such that m′ ∩ Θ11 ̸= ∅ and m′ ∩ Θ21 ̸= ∅. By Proposition 5, there exists ϕ ∈ Φ1
∆ such that

ϕ(m′) = y2. Hence, for any µS ∈ ∆S such that µS
(
Φ1
∆

)
= 1,

∑
y∈Y v(θ, y)π(y|m′, µS) >

v(θ, y1), which is a contradiction to (θ,m) ∈ Σ2
∆. Likewise, we can derive a contradiction for

θ ∈ Θ21 using the similar argument.

(Σ2
∆ ⊇ G∆) We fix (θ,m) ∈ G∆ arbitrarily. The following cases should be checked.

Case 1: θ ∈ Θ11 ∪Θ22.

Without loss of generality, assume that θ ∈ Θ11. That is, m∩Θ21 = ∅ and yS(θ) = y1. First,

suppose thatm /∈ M∆; that is, y
R(θ) = y1 for any θ ∈ m. By Proposition 5, ϕ(m) = y1 for any

ϕ ∈ Φ1
∆. Then, for any µS ∈ ∆S such that µS

(
Φ1
∆

)
= 1,

∑
y∈Y v(θ, y)π(y|m,µS) = v(θ, y1).

Thus, m ∈ BRS(θ, µ
S) holds. Next, suppose that m ∈ M∆. Because of m ∩ Θ11 ̸= ∅

and Proposition 5, there exists ϕ′ ∈ Φ1
∆ such that ϕ′(m) = y1. Because m ∩ Θ21 = ∅,

there exists µS′ ∈ ∆S such that µS′
(ϕ′) = 1 and

∑
y∈Y v(θ, y)π(y|m,µS′

) = v(θ, y1); that is,

m ∈ BRS(θ, µ
S′
) holds. Likewise, we can show the case for θ ∈ Θ22 by the similar argument.

Case 2: θ ∈ Θ12 ∪Θ21.

Without loss of generality, we assume that θ ∈ Θ12. That is, m ∩ (Θ22 ∪Θ21 ∪Θ0\Θ10) ̸= ∅,

and then, m ∈ M∆. Hence, by Proposition 5, there exist ϕ′, ϕ′′ ∈ Φ1
∆ such that for any

m′ ∈ M∆:

ϕ′(m′) =

 y1 if m′ ∩Θ22 ̸= ∅,

y2 otherwise,
(A.13)

ϕ′′(m′) =

 y2 if m ∩Θ22 ̸= ∅,

y1 otherwise.
(A.14)
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First, suppose that m ∩Θ22 ̸= ∅. Consider belief µS′ ∈ ∆S such that:

µS′
(ϕ) =

 1/3 if ϕ = ϕ′,

2/3 if ϕ = ϕ′′.
(A.15)

It is then obvious that m ∈ BRS(θ, µ
S′
). Next, suppose that m ∩ Θ22 = ∅. Consider the

following belief µS′′ ∈ ∆S such that:

µS′′
(ϕ) =

 2/3 if ϕ = ϕ′,

1/3 if ϕ = ϕ′′.
(A.16)

Again, it is obvious that m ∈ BRS(θ, µ
S′′

). Likewise, we can show the scenario for θ ∈ Θ21.

Case 3: θ ∈ Θ0\(Θ01 ∪Θ02).

In this case, actions y1 and y2 are indifferent for type θ. Hence, it is obvious that m ∈

BRS(θ, µ
S) holds for any m ∈ M(θ) and µS ∈ ∆S such that µS

(
Φ1
∆

)
= 1.

Case 4: θ ∈ Θ01 ∪Θ02.

Without loss of generality, we assume that θ ∈ Θ01. Notice that m′ ∈ M∆ holds for any

m′ ∈ M(θ). First, suppose that m ∩Θ22 ̸= ∅ and m ∩Θ12 ̸= ∅. By Proposition 5, there exist

ϕ′, ϕ′′ ∈ Φ1
∆ such that for any m′ ∈ M∆:

ϕ′(m′) =

 y1 if m′ ∩Θ22 ̸= ∅ and m′ ∩Θ12 ̸= ∅,

y2 otherwise,
(A.17)

ϕ′′(m′) =

 y2 if m′ ∩Θ22 ̸= ∅ and m′ ∩Θ12 ̸= ∅,

y1 otherwise.
(A.18)

Consider belief µS′ ∈ ∆S such that:

µS′
(ϕ) =

 2/3 if ϕ = ϕ′,

1/3 if ϕ = ϕ′′.
(A.19)

It is then obvious that m ∈ BRS(θ, µ
S′
). Next, suppose that [m ∩Θ22 = ∅ or m ∩Θ12 = ∅],

m ∩ Θ11 ̸= ∅, and m ∩ Θ21 ̸= ∅. By Proposition 5, there exist ϕ̂, ϕ̃ ∈ Φ1
∆ such that for any
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m′ ∈ M∆:

ϕ̂(m′) =

 y1 if [m′ ∩Θ22 = ∅ or m′ ∩Θ12 = ∅],m′ ∩Θ11 ̸= ∅, and m′ ∩Θ21 ̸= ∅,

y2 otherwise.

(A.20)

ϕ̃(m′) =

 y2 if [m′ ∩Θ22 = ∅ or m′ ∩Θ12 = ∅],m′ ∩Θ11 ̸= ∅, and m′ ∩Θ21 ̸= ∅,

y1 otherwise.

(A.21)

Then, for belief µS′′ ∈ ∆S such that:

µS′′
(ϕ) =

 2/3 if ϕ = ϕ̂,

1/3 if ϕ = ϕ̃,
(A.22)

m ∈ BRS(θ, µ
S′′

) holds. Finally, suppose that [m∩Θ22 = ∅ or m∩Θ12 = ∅] and [m∩Θ11 = ∅

or m ∩ Θ21 = ∅]. Because m ∈ M(θ), there exists ϕ′′′ ∈ Φ1
∆ such that ϕ′′′(m) = y1. Then,

under belief µS′′′ ∈ ∆S such that µS′′′
(ϕ′′′) = 1, m ∈ BRS(θ, µ

S′′′
) holds.

Therefore, we can conclude Σ2
∆ = G∆. ■

A.8 Proof of Theorem 3

(Existence) Define:

σ∗(θ) ≡

 {θ} if θ ∈ Θ11 ∪Θ22 ∪Θ0,

Θ12 ∪Θ21 otherwise
, (A.23)

Φ∗ ≡

 ϕ∗ ∈ Σ̄

∣∣∣∣∣∣ ϕ∗(m) =

 yR(θ) if m = {θ},

y1 if m ∩Θ12 ̸= ∅

 , (A.24)

Φ∗∗ ≡

 ϕ∗∗ ∈ Σ̄

∣∣∣∣∣∣ ϕ∗∗(m) =

 yR(θ) if m = {θ},

y2 if m ∩Θ21 ̸= ∅

 (A.25)

It is straightforward that for any ϕ∗ ∈ Φ∗, (σ∗, ϕ∗) constructs a PBE whose informativeness is U+.

Hence, it remains to show that (σ∗, ϕ∗) is ∆-rationalizable. That is, it is sufficient to show that

G(σ∗) ⊆ Σ2k
∆ , Φ∗ ∩ Φ2k−1

∆ ̸= ∅, and Φ∗∗ ∩ Φ2k−1
∆ ̸= ∅ for any k ≥ 0. We show the statement by

induction. If k = 0, then the statement is obvious because Σ0
∆ =

∪
σ∈Σ̄G(σ) and Φ−1

∆ = Φ̄. We

then suppose that G(σ∗) ⊆ Σ2k
∆ , Φ∗ ∩ Φ2k−1

∆ ̸= ∅, and Φ∗∗ ∩ Φ2k−1
∆ ̸= ∅ for some k > 0 as an
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induction hypothesis.

First, we show that Φ∗ ∩ Φ2k+1
∆ ̸= ∅. Suppose, in contrast, that Φ∗ ∩ Φ2k+1

∆ = ∅. That is,

for any ϕ ∈ Φ2k+1
∆ , either one of the following holds: (i) there exists message m′ = {θ} such that

ϕ(m′) ̸= yR(θ), or (ii) there exists message m′′ such that m′′ ∩ Θ12 ̸= ∅ and ϕ(m′′) = y2. We fix

ϕ ∈ Φ2k+1
∆ arbitrarily. The following cases need be checked.

Case 1: There exists message m′ = {θ} such that ϕ(m′) ̸= yR(θ).

By Proposition 5, ϕ /∈ Φ1
∆ holds. However, it implies that ϕ /∈ Φ2k+1

∆ because Φ2k+1
∆ ⊆ Φ1

∆,

which is a contradiction.

Case 2: There exists message m′′ such that m′′ ∩Θ12 ̸= ∅ and ϕ(m′′) = y2.

First, suppose that Θ2k+1
∆ (m′′) ̸= ∅. We define:

M ′′ ≡
{
m′′ ∈ M

∣∣∣ (i) Θ2k+1
∆ (m′′) ̸= ∅, (ii) m′′ ∩Θ12 ̸= ∅, and (iii) ϕ(m′′) = y2

}
(A.26)

Now, suppose, in contrast, that for any m′′ ∈ M ′′, there exist θ′′ ∈ Θ2k+1
∆ (m′′) ∩ Θ12. For

belief µ̃R ∈ ∆R such that µ̃R(θ′′|m′′) = 1 for any m′′ ∈ M ′′, y1 ∈ BRR(m
′′, µ̃R(m′′)) holds.

Then, we define:

ϕ̃(m) ≡

 y1 if m ∈ M ′′,

ϕ(m) otherwise.
(A.27)

By construction, ϕ̃ is never eliminated in the previous rounds, and then ϕ̃ ∈ Φ∗ ∩ Φ2k+1
∆ ,

which is a contradiction. Thus, there should exist m̃ ∈ M ′′ such that Θ2k+1
∆ (m̃) ∩ Θ12 = ∅.

That is, (θ̃, m̃) is eliminated in round l ∈ {4, 6, . . . , 2k} where θ̃ ∈ m̃ ∩ Θ12. In other words,

there must exist message m̂ ∈ M(θ̃) such that for any µS ∈ ∆S such that µS
(
Φl−1
∆

)
= 1,∑

y∈Y v(θ̃, y)π(y|m̂, µS) >
∑

y∈Y v(θ̃, y)π(y|m̃, µS). Notice that because Φ2k+1
∆ ⊆ Φl−1

∆ , ϕ ∈

Φl−1
∆ . On the other hand, because θ̃ ∈ Θl−1

∆ (m̃), there exists ϕ′ ∈ Φl−1
∆ such that ϕ′(m̃) = y1.

If m̃ ∩ Θ22 = ∅, then there exists belief µS ∈ ∆S such that µS(ϕ) = 1, which contradicts

the elimination of (θ̃, m̃) in round l. Hence, m̃ ∩ Θ22 ̸= ∅ should hold. Now, consider belief

µS
ε ∈ ∆S such that for ε ∈ (0, 1]:

µS
ε (ϕ̃) =

 1− ε if ϕ̃ = ϕ,

ε if ϕ̃ = ϕ′.
(A.28)

Because
∑

y∈Y v(θ̃, y)π(y|m̃, µS
ε ) converges to v(θ̃, y2) as ε → 0, to eliminate (θ̃, m̃) in round
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l, there must exist m̂ ∈ M(θ̃) such that ϕ(m̂) = y2 for any ϕ ∈ Φl−1
∆ . Therefore, we can

insist that Θl−1
∆ (m̂) ∩ Θ12 = ∅; otherwise, there exists ϕ′′′ ∈ Φl−1

∆ such that ϕ′′′(m̂) = y1.

That is, (θ̃, m̂) is eliminated in round l′ ≤ l− 2. By repeatedly applying the above argument,

we can claim that there must exist m∗ ∈ M(θ̃) such that ϕ(m∗) = y2 for any ϕ ∈ Φ1
∆.

However, such m∗ never exists by Proposition 5, which is a contradiction. Next, suppose

that Θ2k+1
∆ (m′′) = ∅. That is, it is obvious that Θ2k+1

∆ (m′′) ∩Θ12 = ∅. Hence, by the similar

argument used above, we can derive a contradiction.

Therefore, we can conclude that Φ∗ ∩ Φ2k+1
∆ ̸= ∅. Likewise, we can show that Φ∗∗ ∩ Φ2k+1

∆ ̸= ∅.

Next, we show that G(σ∗) ⊆ Σ2k+2
∆ . The following two cases need to be checked.

Case 1: θ ∈ Θ11 ∪Θ22 ∪Θ0.

Because Φ2k+1
∆ ⊆ Φ1

∆, ϕ({θ}) = yR(θ) must hold for any ϕ ∈ Φ2k+1
∆ by Proposition 5. That

is, for any θ ∈ Θ11 ∪ Θ22 ∪ Θ0, there exists belief µS ∈ ∆S such that {θ} ∈ BRS(θ, µ
S) and

µS
(
Φ2k+1
∆

)
= 1.

Case 2: θ ∈ Θ12 ∪Θ21.

Without loss of generality, assume that θ ∈ Θ12. Because Φ∗∗ ∩ Φ2k+1
∆ ̸= ∅, there exists

ϕ∗∗ ∈ Φ∗∗ ∩ Φ2k+1
∆ such that ϕ∗∗(Θ12 ∪ Θ21) = y2. Hence, there exists belief µS′ ∈ ∆S such

that µS′
(ϕ∗∗) = 1. Given µS′

,
∑

y∈Y v(θ, y)π(y|Θ12 ∪Θ21, µ
S′
) = v(θ, y2) = v(θ, yS(θ)). That

is, (Θ12 ∪ Θ21) ∈ BRS(θ, µ
S′
) holds. Likewise, we can show the scenario for θ ∈ Θ21 by the

similar argument.

Therefore, G(σ∗) ⊆ Σ2k+1
∆ holds. Thus, we can conclude that (σ∗, ϕ∗) is ∆-rationalizable for any

ϕ∗ ∈ Φ∗.

(Uniqueness) Because of Propositions 5 and 6, we can insist that (i) Φ1
∆ = ΦC , and (ii) any

type in Θ11 (resp. Θ22) is never pooling with types in Θ21 (resp. Θ12). Hence, we can show the

uniqueness through the argument used in Proposition 4 and Theorem 2. ■

A.9 Proof of Theorem 4

We can show the statement by the similar argument used in Propositions 3, 4, and Theorem 2.

Hence, it is omitted.25 ■

25The details appear in Appendix B.
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Appendix B: Supplementary Materials

B.1 Other existing selection criteria

We discuss the validity of the neologism proofness and the announcement proofness in the body of

the paper. In this section, on the other hand, we adopt the other selection criteria that are well

known in the literature. As mentioned above, those criteria do not derive the consistent results with

the convention focusing on the most informative equilibrium. To compare the results in the body

of the paper, Assumptions 1 and 2 are maintained throughout this subsection. We introduce the

following additional notation. Let BRR(m) be the set of the receiver’s best responses to message

m under some posterior satisfying Requirement 1 defined by:

BRR(m) ≡
∪

P:
∫
m P(θ|m)dθ=1

BRR(m,P). (B.1)

For subset n ⊆ m, let B(n,m) be the set of the receiver’s best responses to message m when her

belief is concentrated on subset n defined by:

BRR(n,m) ≡
∪

P:
∫
n P(θ|m)dθ=1

BRR(m,P). (B.2)

DefineX(σ∗, ϕ∗;P∗) ≡
{
θ ∈ Θ12 ∪Θ21

∣∣ ϕ∗(σ∗(θ)) = yR(θ)
}
given a pure-strategy PBE (σ∗, ϕ∗;P∗).

This is a set of states lying in the disagreement regions where the receiver undertakes her ideal

action yR(θ) in equilibrium. The following lemma is a useful result frequently used hereafter.

Lemma 5 (Lemma 2 of Miura (2014))

If there exists a pure strategy PBE (σ∗, ϕ∗;P∗) such that X(σ∗, ϕ∗;P∗) ̸= ∅, then either X(σ∗, ϕ∗;P∗) ⊆

Θ12 or X(σ∗, ϕ∗;P∗) ⊆ Θ21.

Proof. If either Θ12 = ∅ or Θ21 = ∅, then the statement trivial. Hence, we assume that Θ12 ̸= ∅

and Θ21 ̸= ∅. Suppose, in contrast, that there exists pure-strategy PBE (σ∗, ϕ∗;P∗) such that

X(σ∗, ϕ∗;P∗) ∩ Θ12 ̸= ∅ and X(σ∗, ϕ∗;P∗) ∩ Θ21 ̸= ∅. Choose θ ∈ X(σ∗, ϕ∗;P∗) ∩ Θ12 and

θ′ ∈ X(σ∗, ϕ∗;P∗)∩Θ21, arbitrarily. However, there is no incentive-compatible reaction to message

m = {θ, θ′} ∈ M(θ)∩M(θ′); if ϕ∗({θ, θ′}) = y2, then type θ has an incentive to deviate from σ∗(θ),

and if ϕ∗({θ, θ′}) = y1, then type θ′ has an incentive to deviate, which is a contradiction. ■
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B.1.1 Intuitive criterion

The intuitive criterion, one of the most well-known criteria, has no bite in our environment like

cheap-talk games. However, the reason is different from that of cheap-talk games. Because any

type can send any message without costs in cheap-talk games, for any equilibrium, there exists

an outcome-equivalent equilibrium in which all messages are used on the equilibrium path. On

the other hand, the message set varies dependent on the type in persuasion games, such argument

cannot directly applied. Let J(m) ≡
{
θ ∈ m

∣∣ V̄ (θ, ϕ∗(σ∗(θ))) > maxα∈BRR(m) V (θ, α)
}
be the set

of types who never deviate to off-the-equilibrium-path message m under equilibrium (σ∗, ϕ∗;P∗).

Definition 6 Intuitive Criterion (Cho and Kreps, 1987)

An equilibrium (σ∗, ϕ∗;P∗) fails the intuitive criterion if there exists an off-the-equilibrium-path

message m and type θ ∈ m such that:

V̄ (θ, ϕ∗(σ∗(θ))) < min
α∈BRR(m\J(m),m)

V (θ, α). (B.3)

Proposition 7 Any PBE satisfies the intuitive criterion.

Proof. Suppose, in contrast, that there exists PBE (σ∗, ϕ∗;P∗) that fails the intuitive criterion.

That is, there exists off-the-equilibrium-path message m′ and state θ′ ∈ m′ satisfying (B.3). By

Lemma 1, θ′ ∈ Θ12∪Θ21∪Θ01∪Θ02 should hold. Suppose, in contrast, that θ′ ∈ Θ01∪Θ02. Without

loss of generality, we assume that θ′ ∈ Θ01. Because θ′ ∈ m′, y1, y2 ∈ BRR(m
′) holds. That is, for

any θ ∈ m′, V̄ (θ, ϕ∗(σ∗(θ))) ≤ maxα∈BRR(m′) V (θ, α) = v(θ, yS(θ)), which means that J(m′) = ∅.

However, this implies that V̄ (θ′, ϕ∗(σ∗(θ′))) ≥ v(θ′, y2) = minα∈BRR(m′\J(m′),m′) V (θ′, α), which

contradicts (B.3). Thus, θ′ ∈ Θ12 ∪Θ21, and then assume that θ′ ∈ Θ12 without loss of generality.

To satisfy (B.3), m′\J(m′) ⊆ Θ21 ∪ Θ22 ∪ Θ20 should hold; otherwise, y1 ∈ BRR(m
′\J(m′),m′),

and then (B.3) is violated. That is, θ′ ∈ J(m′) holds. However, because m′∩ (Θ21∪Θ22∪Θ20) ̸= ∅,

y2 ∈ BRR(m
′), which implies that maxα∈BRR(m′) V (θ′, α) = v(θ′, y2) ≥ V̄ (θ′, ϕ∗(σ∗(θ′))). That is,

θ′ /∈ J(m′), which is a contradiction. ■
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B.1.2 D1 and D2 criteria

Like the intuitive criterion, D1 and D2 criteria have no bite. Formally, any informativeness between

[U−, U+] can be supported by some D1 and D2 equilibria. For PBE (σ∗, ϕ∗;P∗), define:

D(θ,m) ≡
{
α ∈ BRR(m)

∣∣ V̄ (θ, ϕ∗(σ∗(θ))) < V (θ, α)
}
, (B.4)

D0(θ,m) ≡
{
α ∈ BRR(m)

∣∣ V̄ (θ, ϕ∗(σ∗(θ))) = V (θ, α)
}
, (B.5)

which are the sets of best responses to off-the-equilibrium-path message m such that type θ strictly

prefers and indifferent to the equilibrium outcome, respectively.26

Definition 7 D1 and D2 Criteria (Cho and Kreps, 1987)

(i) An equilibrium belief P∗ satisfies the D1 criterion if the following condition holds: for any

off-the-equilibrium-path message m, if there exist types θ, θ′ ∈ m such that:

D(θ,m) ∪D0(θ,m) ⊊ D(θ′,m), (B.6)

then θ /∈ S(P∗(m)).

(ii) An equilibrium belief P∗ satisfies the D2 criterion if the following condition holds: for any

off-the-equilibrium-path message m, if there exists type θ ∈ m such that:

D(θ,m) ∪D0(θ,m) ⊊
∪

θ′∈M−1(m)\{θ}

D(θ′,m), (B.7)

then θ /∈ S(P∗(m)).27

(iii) A PBE supported by a belief satisfying the D1 (resp. D2) criterion is called D1 (resp. D2)

equilibrium.

Proposition 8 For any informativeness U ∈ [U−, U+], there exists D1 and D2 equilibria whose

informativeness is U .

Proof. It is sufficient to show that for any U ∈ [U−, U+], there exists a pure strategy D2 equilibrium

whose informativeness is U . For U = U−, we consider PBE (σ−;µ−;P−) characterized in Theorem

26If D(θ,m) = {0} or {1}, then we simply represent it by D(θ,m) = {y1} or {y2} with some abuse of notation. It
is same for D0(θ,m).

27Cho and Sobel (1990) call this criterion the universal divinity, which is slightly different from the original definition
by Banks and Sobel (1987).
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1. By construction, it is straightforward that P− satisfies the D2 criterion because D(θ,m) = ∅

for any θ ∈ Θ and m ∈ M(θ). Hence, suppose that U ̸= U−. By Theorem 1 and Lemma

5, it is sufficient to focus on a pure-strategy PBE (σ∗, ϕ∗;P∗) whose informativeness is U such

that (i) P (X(σ∗;ϕ∗;P∗)) > 0 and X(σ∗, ϕ∗;P∗) ⊆ Θ12, and (ii) for any off-the-equilibrium-path

message m such that m ∩ X(σ∗, ϕ∗;P∗) ̸= ∅, S (P∗(m)) ⊆ m ∩ X(σ∗, ϕ∗;P∗). Notice that, by

construction, any types in Θ\X(σ∗, ϕ∗;P∗) obtain the highest utility in this equilibrium, and then

never deviate under any belief. Hence, it reminds to show that (B.7) never holds for arbitrary fixed

off-the-equilibrium-path message m′ ∈
∪

θ∈X(σ∗,ϕ∗;P∗)M(θ) and θ′ ∈ S(P∗(m′)). First, suppose

that m′ ⊆ (Θ11 ∪Θ12 ∪Θ10). In this scenario, BRR(m
′) = {y1}, and then D(θ′,m′)∪D0(θ′,m′) =

{y1} holds. Also, for any θ ∈ M−1(m′)\{θ′}, D(θ,m′) = ∅. Thus, (B.7) is violated. Next,

suppose that m′ ∩ (Θ22 ∪Θ21 ∪ (Θ0\Θ10)) ̸= ∅. In this scenario, BRR(m
′) = [0, 1], and then

D(θ′,m′) ∪ D0(θ′,m′) = [0, 1]. That is, (B.7) is never satisfied. Therefore, P∗ satisfies the D2

criterion. ■

B.1.3 Undefeatedness

So far, we have applied criteria that likely select informative equilibrium, i.e., separating equilib-

rium, in the context of costly signaling games. On the other hand, the defeatedness likely selects

uninformative equilibrium. However, this criterion also has no power in our environment as fol-

lows.28 In this subsection, we focus on pure strategy equilibria following Mailath et al. (1993).

Definition 8 Undefeated Equilibrium (Mailath et al., 1993)

(i) PBE (σ∗, ϕ∗;P∗) defeats PBE (σ′, ϕ′;P ′) if there exists message m ∈ M such that:

(U1) σ′(θ) ̸= m for any θ ∈ Θ, and K ≡ { θ ∈ Θ | σ∗(θ) = m } ̸= ∅;

(U2) v(θ, ϕ∗(σ∗(θ))) ≥ v(θ, ϕ′(σ′(θ))) for any θ ∈ K with strictly inequality for some θ′ ∈ K;

and

(U3) there exists type θ̂ ∈ K such that:

P ′(θ̂|m) ̸= f(θ̂)π(θ̂)∫
Θ f(θ)π(θ)dθ

(B.8)

for any π : Θ → [0, 1] satisfying:

28In contrast, Celik (2014) considers a model where a privately informed seller strategically discloses the information
about the quality of a product to an uninformed buyer, and successfully selects the unique equilibrium by applying
the undefeatedness. The difference from our environment is that (i) the buyer also has private information about her
own preference, and (ii) the seller strategically sets the price of the product.
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• if θ ∈ K and v(θ, ϕ∗(σ∗(θ))) > v(θ, ϕ′(σ′(θ))), then π(θ) = 1; and

• if θ /∈ K, then π(θ) = 0.

(ii) PBE (σ∗, ϕ∗;P∗) is undefeated if no PBE defeats (σ∗, ϕ∗;P∗).

Proposition 9 For any informativeness U ∈ [U−, U+], there exists an undefeated equilibrium

(σ∗, ϕ∗;P∗) whose informativeness is U .

Proof. Suppose, in contrast, that there exists U ∈ [U−, U+] such that any PBE (σ∗, ϕ∗;P∗) whose

informativeness is U is not undefeated. Now, we focus on the following PBE (σ∗ϕ∗;P∗):

• P (X(σ∗, ϕ∗;P∗)) > 0 and X(σ∗, ϕ∗;P∗) ⊆ Θ12,

• ϕ∗(σ∗(θ)) = yS(θ) for any θ ∈ Θ01 ∪Θ02,

• E[u(θ, ϕ∗(σ∗(θ)))] = U , and

• for any off-the-equilibrium-path message m such that m ∩ X(σ∗, ϕ∗;P∗) ̸= ∅, S(P∗(m)) ⊆

m ∩X(σ∗, ϕ∗;P∗).

By the hypothesis, there exists another PBE (σ′, ϕ′;P ′) that defeats PBE (σ∗, ϕ∗;P∗); that is, there

exists a defeating messagem′ satisfying Conditions (U1) - (U3). DefineK ′ ≡ { θ ∈ Θ | σ′(θ) = m′ } ̸=

∅. Because at least one type in K ′ should be strictly improved in equilibrium (σ′, ϕ′;P ′), K ′ ∩

X(σ∗, ϕ∗;P∗) ̸= ∅, m′ ∈
∪

θ∈X(σ∗,ϕ∗;P∗)M(θ), and ϕ′(m′) = y2. Notice that because K ′ ⊆ m′, the

following belief under message m′ is consistent with PBE (σ∗, ϕ∗;P∗):

P∗(θ|m′) =


f(θ)∫

K′∩X(σ∗,ϕ∗;P∗) f(θ̂)dθ̂
if θ ∈ K ′ ∩X(σ∗, ϕ∗;P∗),

0 otherwise.
(B.9)

By Lemma 1, ϕ′(σ′(θ)) = y1 for any θ ∈ Θ11, so K ′ ∩ Θ11 = ∅. If there exists type θ′ ∈

K ′ ∩ (Θ21 ∪Θ01), then v(θ′, ϕ′(σ′(θ′))) < v(θ′, ϕ∗(σ∗(θ))) holds, which contradicts Condition (U2).

Hence, K ′ ∩ (Θ21 ∪Θ01) = ∅. That is, K ′ ⊆ Θ22 ∪Θ12 ∪ (Θ0\Θ01). Notice that:

• if θ ∈ K ′ ∩X(σ∗, ϕ∗;P∗), then v(θ, ϕ′(σ′(θ))) > v(θ, ϕ∗(σ∗(θ))), and

• if θ ∈ K ′\X(σ∗, ϕ∗;P∗), then v(θ, ϕ′(σ′(θ))) = v(θ, ϕ∗(σ∗(θ))).

Now, we define function π′ : Θ → [0, 1] by:

π′(θ) ≡

 1 if θ ∈ K ′ ∩X(σ∗, ϕ∗;P∗),

0 otherwise.
(B.10)
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However, for any θ ∈ K ′:

π′(θ)f(θ)∫
Θ π′(θ̂)f(θ̂)dθ̂

=


f(θ)∫

K′∩X(σ∗,ϕ∗;P∗) f(θ̂)dθ̂
if θ ∈ K ′ ∩X(σ∗, ϕ∗;P∗),

0 otherwise

= P∗(θ|m′), (B.11)

which is a contradiction to that PBE (σ′, ϕ′;P ′) defeats PBE (σ∗, ϕ∗;P∗). ■

B.1.4 Credible message equilibrium

Rabin (1990) suggests a notion of credible message equilibrium that is a PBE constructed by a

sense of rationalizable strategies that represent the minimum level of information that the sender

can credibly transmit. As a result, only the least informative equilibrium survives, as shown

below. Let X ≡ {X1, X2, · · · , XD } such that (i) Xi ⊆ Θ for any i and (ii) Xi ∩ Xj = ∅ for

any i ̸= j be a type profile. Notice that a type profile may not be a partition of the type space.

ΘX ≡ { θ ∈ Θ | ∃Xi ∈ X such that θ ∈ Xi } represents the set of types covered by type profile X .

M(Xi) represents the set of self-claiming messages insisting that “my type is in Xi”. Notice that

because we consider a persuasion game with fully certifiable information, M(Xi) = {Xi} for any

Xi ∈ X . Let Y ∗(Xi) ≡
{
y∗ ∈ Y

∣∣∣ y∗ ∈ argmaxy∈Y
∫
Xi

u(θ, y)f(θ)dθ
}

be the set of the receiver’s

best responses given that her prior belief is restricted to subset Xj . A credible message profile X

is a type profile such that for any Xi ∈ X and θ ∈ Xi, Y
∗(Xi) = argmaxy∈Y v(θ, y).29 In general,

there exist multiple credible message profiles, so we focus on the maximal one in the following sense.

Let X ∗ be a credible message profile such that (i) for any credible message profile X , ΘX ⊆ ΘX ∗ ,

and (ii) for any Xi, Xj ∈ X ∗, Y ∗(Xi) ̸= Y ∗(Xj). We regard credible message profile X ∗ as the

minimal amount of information that the sender can transmit, and apply the iterative elimination

procedure of strictly dominated strategies consistently with it as follows. We say that strategy σ

is strictly dominated in Σ′ ×Φ′ where Σ′ ⊆ Σ and Φ′ ⊆ Φ if there exists strategy σ′ ∈ Σ′ such that

for any distribution π over Φ′,
∑

ϕ∈Φ′ π(ϕ)V̄ (θ, ϕ(σ′(θ))) >
∑

ϕ∈Φ′ π(ϕ)V̄ (θ, ϕ(σ(θ))). The strict

dominance for the receiver is defined likewise. Given credible message profile X ∗, let Σ0
M and Φ0

M

29Rabin (1990) requires additional condition that even if types not covered by type profile X may mimic types in
Xi ∈ X , the set of the receiver’s best responses is equivalent to Y ∗(Xi). However, this condition is always satisfied
in our environment.
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be the sets of strategies of the sender and the receiver defined by:

Σ0
M ≡

{
σ ∈ ∆(M)Θ

∣∣ σ(θ) = Xi ∀Xi ∈ X ∗ and θ ∈ Xi

}
, (B.12)

Φ0
M ≡

{
ϕ ∈ ∆(Y )M

∣∣ ϕ(m) ∈ ∆(Y ∗(Xi)) ∀Xi ∈ X ∗ and m = Xi

}
, (B.13)

respectively. For n ≥ 1, Σn
M and Φn

M are recursively defined as follows:

Σn
M ≡

{
σ ∈ Σn−1

M

∣∣ σ is not strictly dominated in Σn−1
M × Φn−1

M

}
, (B.14)

Φn
M ≡

{
ϕ ∈ Φn−1

M

∣∣ ϕ is not strictly dominated in Σn−1
M × Φn−1

M

}
. (B.15)

Define ΣX ∗
M ≡ Σ∞

M and ΦX ∗
M ≡ Φ∞

M .30

Definition 9 Credible Message Equilibrium (Rabin, 1990)

(i) A set of strategy pairs ΣM × ΦM defined as follows is called credible message rationalizable

strategies:

ΣM × ΦM ≡

 ΣX ∗
M × ΦX ∗

M if ∃ a credible message profile X ∗;

ΣR × ΦR otherwise,
(B.16)

where ΣR × ΦR is a set of pairs of rationalizable strategies.

(ii) A PBE (σ∗, ϕ∗;P∗) is a credible message equilibrium if (σ∗, ϕ∗) ∈ ΣM × ΦM .

Proposition 10 U− is the unique informativeness selected by the credible message equilibrium.31

Proof. Because of Assumptions 1 and 2, the maximal credible message profile X ∗ is uniquely de-

termined except for types in Θ0. For example, consider the following type profile: X ∗ = {X1, X2 }

where X1 ≡ Θ11 ∪Θ21 ∪Θ00 ∪Θ01 ∪Θ10 and X2 ≡ Θ22 ∪Θ12 ∪Θ02 ∪Θ20. Hence, it is trivial that:

ΣM = Σ0
M =

 σ ∈ ∆(M)Θ

∣∣∣∣∣∣ σ(θ) =
 X1 if θ ∈ X1,

X2 otherwise,

 (B.17)

ΦM = Φ0
M =

 ϕ ∈ ∆(Y )M

∣∣∣∣∣∣ ϕ(m) =

 y1 if m = X1,

y2 if m = X2.

 (B.18)

30Because we consider a infinite game, the iterative elimination procedure may not stop within finite time. However,
it does not matter to our result as shown in the following proposition.

31If Assumption 2-(ii) is violated, then we have to modify Condition (i) of the maximal credible message profile
X ∗ as follows: (i’) there never exists credible message profile X ′ such that ΘX∗ ⊊ ΘX ′ . With this modification, we
can obtain the similar uniqueness result.
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Therefore, it is also straightforward that a PBE constructed by credible message rationalizable

strategies must be the least informative equilibrium. ■

B.1.5 Proposal-proof equilibrium

Proposal-proof equilibrium developed by Zapater (1997) is a selection criterion based on rational-

izability like the credible proposal equilibrium. In contrast with Rabin (1990) who specifies the

minimum amount of information that the sender can transmit, Zapater (1997) defines credible pro-

posal that is a set of strategies representing the maximum amount of information that the sender

will transmit, and then checks whether a credible proposal upsets a PBE as a status quo. While

credible proposals exclude weakly dominated messages like certifiable dominance, the selection re-

sult is completely different from ours; that is, the proposal-proofness has no bite in our environment

as shown following. Again, we focus on pure strategy equilibria in this section following Zapater

(1997).

Σ̄ and Φ̄ represent the sets of sender’s and the receiver’s pure strategies, respectively. Given Σ′ ⊆

Σ̄ and ϕ ∈ ∆(Φ̄), we say that σ is a best response to ϕ in Σ′ if σ(θ) ∈ argmaxm∈Σ′(θ) V̄ (θ, ϕ(m)) for

any θ ∈ Θ, where Σ′(θ) ≡
∪

σ′∈Σ′{σ′(θ)}. Likewise, given Φ′ ⊆ Φ̄ and m ∈
∪

θ∈Θ S(σ(θ)) for some

σ ∈ ∆(Σ̄), we say that ϕ(m) is a best response to m in Φ′ if ϕ(m) ∈ argmaxy∈Φ′(m) EP(m,σ)[u(θ, y)],

where Φ′(m) ≡
∪

ϕ∈Φ′{ϕ(m)} and P(m,σ) is the receiver’s belief upon observing message m derived

from σ consistently with Bayes’ rule. We call P = (ΣP ,ΦP ) ⊆ (Σ̄, Φ̄) a proposal if it satisfies the

following conditions: (i) σ ∈ ΣP if and only if there exists a strategy ϕ ∈ ∆(ΦP ) such that σ is

a best response to ϕ in Σ̄; and (ii) ϕ ∈ ΦP if and only if there exists a strategy σ ∈ ∆(ΣP ) such

that for any m ∈
∪

θ∈Θ{σ(θ)}, ϕ(m) is a best response to m in ΦP . In general, there exist multiple

proposals, so we focus on proposals excluding weakly dominated messages. Given two proposals

P = (ΣP ,ΦP ) and Q = (ΣQ,ΦQ) and messages m ∈ ΣP (θ) and m′ ∈ ΣQ(θ), we denote m ≿θ m′

if it satisfies the following condition: for any ϕ ∈ ΦP and ϕ′ ∈ ΦQ, v(θ, ϕ(m)) ≥ v(θ, ϕ′(m′)) with

strictly inequality for some ϕ̂ ∈ ΦP and ϕ̂′ ∈ ΦQ. We say that proposal P = (ΣP ,ΦP ) has the

strong best response property if for any θ ∈ Θ, there exist no messages m,m′ ∈ ΣP (θ) such that

m ≿θ m
′, and let P be the set of proposals having the strong best response property.

We consider the following iterative elimination procedure. As an initial point, let Σ0
K and Φ0

K

be the sets of the sender’s and the receiver’s strategies, respectively, defined by: (i) Σ0
K ≡ ΛK where

ΛK is the set of strategies such that behaviors of types in proper subset K ⊊ Θ are restricted, but

types in Θ\K can send any available messages; and (ii) Φ0
K ≡ Φ̄ with Φ0

K(m) ≡ Y for any m ∈ M .
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For n ≥ 1, Σn
K and Φn

K are recursively defined as follows:

Σn
K ≡

{
σ ∈ Σn−1

K

∣∣ ∃ϕ ∈ ∆(Φn−1
K ) such that σ is a best response to ϕ in Σn−1

K

}
; (B.19)

if message m is such that m /∈
∪

σ∈Σn−1
K

∪
θ∈Θ{σ(θ)}, then Φn

K(m) ≡ Φn−1
K (m); otherwise:

Φn
K(m) ≡

 y ∈ Φn−1
K (m)

∣∣∣∣∣∣∣
y is a best response to m in Φn−1

K for some σ ∈ ∆(Σn−1
K )

such that m ∈
∪
θ∈Θ

S(σ(θ))

 ;

(B.20)

Φn
K ≡

 ϕ ∈ Φn−1
K

∣∣∣∣∣∣∣∣∣∣
∃ σ ∈ ∆(Σn−1

K ) such that

(i) if m ∈
∪
θ∈Θ

S(σ(θ)), then ϕ(m) is a best response to m in Φn−1
K ;

(ii) otherwise, ϕ(m) ∈ Φn
K(m).


(B.21)

Define Σ∗
K ≡ Σ∞

K and Φ∗
K ≡ Φ∞

K . We say that pair (K,ΛK) generates proposal P = (σP ,ΦP ) ∈ P

either one of the following conditions holds: (i) if K ⊊ Θ and (Σ∗
K ,Φ∗

K) = (ΣP ,ΦP ); or (ii) K = Θ

and ΛK = ΣP .

Based on the iterative elimination procedure defined above, we further eliminate weakly dom-

inated proposals from P as follows. For two proposals P,Q ∈ P and K ⊆ Θ, we denote P ≿K Q

if there exist strategies σ ∈ ΣP and σ′ ∈ ΣQ such that σ(θ) ≿θ σ′(θ) for any θ ∈ K. Likewise, we

denote P ∼K Q if the following conditions are satisfies: (i) ΣP |K = ΣQ|K where Σ′|K represents

the projection of Σ′ on subset K; and (ii) for any message m ∈
∪

θ∈Θ(ΣP (θ) ∪ ΣQ(θ)), either (a)

ΠP (m) = ΠQ(m); or (b) ϕ(m) = ϕ′(m) for any ϕ ∈ ΦP and ϕ′ ∈ ΦQ where:

ΠP (m) ≡

 P(m) ∈ ∆(Θ)

∣∣∣∣∣∣ ∃ σ ∈ ∆(ΣP ) such that (i) m ∈
∪

θ∈Θ S(σ(θ)), and

P(m) is derived from σ consistently with Bayes’ rule

 . (B.22)

We say that proposal Q ∈ P is dominated if there exists pair (K,ΛK) that generates proposal P ∈ P

such that (i) for any θ ∈ K, either P ≿θ Q or P ∼θ Q; and (ii) for some θ′ ∈ K, P ≿θ′ Q. Let PU

denote the set of undominated proposals satisfying the strong best response property.

Definition 10 Proposal-Proof Equilibrium (Zapater, 1997)

(i) Proposal P ∈ PU is credible if for any Q ∈ PU , ΣQ ⊆ ΣP . Let P∗ be the set of credible
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proposals.

(ii) A PBE e∗ ≡ (σ∗, ϕ∗;P∗) is proposal proof if either one of the following conditions hold:

(P1) there exists no pair (K,ΛK) that generates a credible proposal P ∈ P∗ such that P ≿K e∗;

or

(P2) e∗ is a PBE of a game where the players’ strategies are constrained to ΣP and ΦP for

some credible proposal P ∈ P∗.

Proposition 11 For any U ∈ [U−, U+], there exists a proposal-proof equilibrium e∗ = (σ∗, ϕ∗;P∗)

whose informativeness is U .

Proof. Suppose, in contrast, that there exists U ∈ [U−, U+] such that any PBE whose infor-

mativeness is U is not proposal proof. Fix PBE e∗ = (σ∗, ϕ∗;P∗) whose informativeness is U ,

arbitrarily. Because e∗ is not proposal proof, there must exists pair (K,ΛK) generating a credible

proposal P such that P ≿K e∗. If P (X(e∗)) = 0, then there exists another PBE e′ such that

E[u(θ, ϕ′(σ′(θ)))] = U and ϕ′(σ′(θ)) = yS(θ) for any θ ∈ Θ. However, because P ̸≿θ e′ for any

credible proposal P and θ ∈ Θ, e′ is proposal proof, which is a contradiction. Hence, P (X(e∗)) > 0

must hold. By Lemma 5, we can restrict our attention to X(e∗) ⊆ Θ12 without loss of generality.

Also, by Lemma 1, v(θ, ϕ∗(σ∗(θ))) = v(θ, yS(θ)) for any θ ∈ Θ11 ∪ Θ22. Hence, to hold P ≿K e∗,

K ⊆ Θ12 must hold. Now, we consider the following strategies. Define subset A ⊆ Θ11 ∪Θ21 such

that (i) E[u(θ, y1)|A] ≥ E[u(θ, y2)|A]; and (ii) P (A ∩ Θ11) > 0 and P (A ∩ Θ21) > 0. Let Σ1, Σ2,

Φ1, and Φ2 are the sets of strategies defined by:

Σ1 ≡
{
σ ∈ Σ̄

∣∣ σ(θ) = A for any θ ∈ A
}
, (B.23)

Σ2 ≡

 σ ∈ Σ̄

∣∣∣∣∣∣ σ(θ) =
 A ∩Θ11 if θ ∈ A ∩Θ11,

A if θ ∈ A ∩Θ21

 (B.24)

Φ1 ≡
{
ϕ ∈ Φ̄

∣∣ ϕ(A) = y1
}
, (B.25)

Φ2 ≡
{
ϕ ∈ Φ̄

∣∣ ϕ(A) = y2
}
. (B.26)

Lemma 6 For any proposal P generated by (K,ΛK), Σi ∩ ΣP ̸= ∅ and Φj ∩ ΦP ̸= ∅ for any

i, j ∈ {1, 2}.

Proof of Lemma 6. It is sufficient to show that for any n ∈ N, Σi ∩ Σn
K ̸= ∅ and Φj ∩ Φn

K ̸= ∅ for

any i, j ∈ {1, 2}. We show the statement by induction.
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(i) n = 0.

Because K ⊆ Θ12, behaviors of types in Θ11 ∪ Θ21 are not restricted in the initial point.

Hence, it is obvious that Σi ∩Σ0
K ̸= ∅ for any i. Also, because Φ0

K = Φ̄, Φj ∩Φ0
K ̸= ∅ trivially

holds for any j.

(ii) n = t+ 1.

By the inductive hypothesis, we assume that Σi∩Σt
K ̸= ∅ and Φj∩Φt

K ̸= ∅ for any i, j. Notice

that for any θ ∈ A, sending message m = A is a best response to strategy ϕ1 ∈ Φ1 ∩ Φt
K .

Hence, Σ1∩Σt+1
K ̸= ∅ holds. Also, because Σ2∩Σt

K ̸= ∅, Φt+1
K (A∩Θ11) = {y1}. That is, there

exists strategy ϕ′ ∈ Φ1 ∩Φt
K such that ϕ′(A) = ϕ′(A∩Θ11) = y1. Therefore, we can conclude

that Σ2 ∩ Σt+1
K ̸= ∅. By the induction hypothesis, there exist strategies σ1 ∈ Σ1 ∩ Σt

K and

σ2 ∈ Σ2 ∩ Σt
K . Given strategy σ1, the receiver’s best response to message m = A is choosing

action y = y1. That is, Φ1 ∩ Φt+1
K ̸= ∅ holds. Likewise, given strategy σ2, the receiver’s best

response to message m = A is choosing action y = y2. Thus, Φ2 ∩ Φt+1
k ̸= ∅. □

By Lemma 6, there exist strategies σ′, σ′′ ∈ ΣP and ϕ′ ∈ ΦP such that σ′(θ) = A for any

θ ∈ A∩Θ11; σ
′′(θ) = A∩Θ11 for any θ ∈ A∩Θ11; and ϕ′(A) = y2. However, because ϕ(A∩Θ11) = y1

for any ϕ ∈ ΦP , for any θ ∈ A ∩Θ11, (i) v(θ, ϕ(A ∩Θ11)) ≥ v(θ, ϕ̂(A)) for any ϕ, ϕ̂ ∈ ΦP ; and (ii)

v(θ, ϕ′(A ∩ Θ11)) > v(θ, ϕ′(A)) hold. That is, A ∩ Θ11 ≿θ A where A,A ∩ Θ11 ∈ ΣP (θ) for any

θ ∈ A∩Θ11. This implies that credible proposal P does not have the strong best response property,

which is a contradiction. ■

B.2 ∆-rationalizability when either Θ12 = ∅ or Θ21 = ∅

In this subsection, we show that restrictions to the receiver’s skeptical beliefs guarantee the unique

selection when either Θ12 = ∅ or Θ21 = ∅. Throughout this subsection, we assume that Θ12 ̸= ∅

and Θ21 = ∅. Define:

∆S ≡ ∆
(
Φ̄
)
, (B.27)

∆R ≡
{
µR ∈ ∆̄(Θ,M)

∣∣ ∀m ∈ M such that m ∩Θ12 ̸= ∅, µR(Θ12|m) = 1
}
, (B.28)

ΦS ≡

 ϕ ∈ Φ−1
∆

∣∣∣∣∣∣ (i) if m ∩Θ12 ̸= ∅, then ϕ(m) = y1,

(ii) otherwise, ϕ(m) ∈
∪

θ∈m{yR(θ)}

 , (B.29)

GS ≡
{
(θ,m) ∈ Σ0

∆

∣∣ if θ ∈ Θ22, then m ∩Θ12 = ∅
}
. (B.30)

Proposition 12 Φ1
∆ = ΦS.
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Proof. For message m ∈ M such that m ∩ Θ12 = ∅, we can show the statement using the similar

argument as in Proposition 5. Hence, we can restriction attention to m such that m ∩ Θ12 ̸= ∅.

First, we show that Φ1
∆ ⊆ ΦS . Suppose, in contrast, that there exists ϕ ∈ Φ1

∆ such that ϕ /∈ ΦS .

That is, there exists m ∈ M such that m∩Θ12 ̸= ∅ and ϕ(m) = y2. However, for any µR ∈ ∆R such

that µR(Θ1
∆(m)|m) = 1, BRR(m,µR(m)) = {y1} holds, which contradicts ϕ ∈ Φ1

∆. The converse

can be shown by the similar argument used above. Therefore, Φ1
∆ = ΦS . ■

Proposition 13 Σ2
∆ = GS.

Proof. We can show that Σ2
∆ ⊆ GS using the similar argument as in the proof of Proposition 6.

Hence, we only show the converse. Fix (θ,m) ∈ GS , arbitrarily. First, suppose that θ ∈ Θ22, and

then m ∩Θ12 = ∅. Because for any m ∈ M(θ) such that m ∩Θ12 = ∅, there exists ϕm ∈ Φ1
∆ such

that ϕm(m) = y2. Hence, for belief µS
m ∈ ∆S such that µS

m(ϕm) = 1,
∑

y∈Y v(θ, y)π(y|m,µS
m) =

v(θ, yS(θ)). Thus, m ∈ BRS(θ, µ
S
m) holds. Second, suppose that θ ∈ Θ12. Notice that m∩Θ12 ̸= ∅

holds for anym ∈ M(θ). By Proposition 12, ϕ(m) = y1 for any ϕ ∈ Φ1
∆ andm ∈ M(θ). That is, it is

obvious that m ∈ BRS(θ, µ
S) holds for any m ∈ M(θ) and µS ∈ ∆

(
Φ1
∆

)
= 1. Third, suppose that

θ ∈ Θ11 ∪Θ01. By Proposition 12, for any m ∈ M(θ), there exists ϕm ∈ Φ1
∆ such that ϕm(m) = y1.

Hence, for belief µS
m ∈ ∆S such that µS(ϕm) = 1,

∑
y∈Y v(θ, y)π(y|m,µS

m) = v(θ, yS(θ)). Thus,

m ∈ BRS(θ, µ
S
m) holds. Forth, suppose that θ ∈ Θ02. By Proposition 12, there exists ϕ′ ∈ Φ1

∆

such that ϕ′(m) = y1 for any m ∈ M(θ). Hence, under belief µS′ ∈ ∆S such that µS′
(ϕ′) = 1,

m ∈ BRS(θ, µ
S′
) holds for any m ∈ M(θ). Finally, suppose that θ ∈ Θ0\(Θ01 ∪ Θ02). In this

scenario, both actions y1 and y2 are indifferent for type θ. Thus, it is obvious that m ∈ BRS(θ, µ
S)

for any m ∈ M(θ) and µS ∈ ∆S such that µS
(
Φ1
∆

)
= 1. Therefore, (θ,m) ∈ Σ2

∆ holds; that is,

Σ2
∆ = GS . ■

B.2.1 Proof of Theorem 3

The uniqueness can be shown by the similar arguments used in the body of the paper. Hence, it

remains to show the existence. Define:

σ∗(θ) ≡

 {θ} if θ ∈ Θ11 ∪Θ22 ∪Θ0,

Θ12 if θ ∈ Θ12,
(B.31)

Φ∗ ≡

 ϕ ∈ Φ̄

∣∣∣∣∣∣ ϕ(m) =

 yR(θ) if m = {θ},

y1 if m ∩Θ12 ̸= ∅.

 . (B.32)
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Because for any ϕ∗ ∈ Φ∗, (σ∗, ϕ∗) constructs a PBE whose informativeness is U+. It is then

sufficient to show that G(σ∗) ⊆ Σ2k
∆ and Φ∗ ∩Φ2k−1

∆ ̸= ∅ for any k ≥ 0. We show the statement by

induction. If k = 0, then the statement is trivial because Σ0
∆ =

∪
σ∈Σ̄G(σ) and Φ−1

∆ = Φ̄. We then

assume that G(σ∗) ⊆ Σ2k
∆ and Φ∗ ∩ Φ2k−1

∆ ̸= ∅ for some k > 0 as an induction hypothesis.

First, we show that Φ∗ ∩ Φ2k+1
∆ ̸= ∅. Suppose, in contrast, that Φ∗ ∩ Φ2k+1

∆ = ∅. That is,

for any ϕ ∈ Φ2k+1
∆ , either one of the following holds: (i) there exists message m′ = {θ} such that

ϕ(m′) ̸= yR(θ), or (ii) there exists message m′′ such that m′′ ∩ Θ12 ̸= ∅ and ϕ(m′′) = y2. Fix

ϕ ∈ Φ2k+1
∆ , arbitrarily. If the first scenario holds, then ϕ /∈ Φ2k+1

∆ holds because of Proposition 12

and Φ2k+1
∆ ⊆ Φ1

∆, which is a contradiction. We then suppose that the second scenario holds. Notice

that as long as the receiver’s beliefs are restricted to ∆R, for any type θ ∈ Θ12, any available message

can be a best response in any round of the elimination process. Hence, (m′′ ∩ Θ12) ⊆ Θ2k+1
∆ (m′′)

holds. Define:

M ′′ ≡
{
m′′ ∈ M

∣∣ (i) m′′ ∩Θ12 ̸= ∅, and (ii) ϕ(m′′) = y2
}
. (B.33)

For any m′′ ∈ M ′′, there exists θ′′ ∈ Θ2k+1
∆ (m′′) ∩ Θ12. Hence, for belief µ̃R ∈ ∆R such that

µ̃R(θ′′|m′′) = 1 for any m′′ ∈ M ′′, y1 ∈ BRR(m
′′, µ̃R(m′′)) holds. Then, define:

ϕ̃(m) ≡

 y1 if m ∈ M ′′,

ϕ(m) otherwise.
(B.34)

By construction, ϕ̃ is not eliminated in the previous rounds, and then ϕ̃ ∈ Φ∗ ∩Φ2k+1
∆ holds, which

is a contradiction. Therefore, Φ∗ ∩ Φ2k+1
∆ ̸= ∅ holds.

Next, we show that G(σ∗) ⊆ Σ2k+2
∆ . First, suppose that θ ∈ Θ11 ∪Θ22 ∪Θ0. Because Φ2k+1 ⊆

Φ1
∆, ϕ({θ}) = yR(θ) holds for any ϕ ∈ Φ2k+1

∆ . Hence, there exists belief µS ∈ ∆S such that

µS
(
Φ2k+1
∆

)
= 1 and

∑
y∈Y v(θ, y)π(y|{θ}, µS) = v(θ, yS(θ)); that is, {θ} ∈ BRS(θ, µ

S) holds. We

then suppose that θ ∈ Θ12. Again, because type θ cannot induce action y2 with positive probability,

it is obvious that Θ12 ∈ BRS(θ, µ
S) holds for any µS ∈ ∆S such that µS

(
Φ2k+1
∆

)
= 1. Thus, we

can conclude that G(σ∗) ⊆ Σ2k+2
∆ . ■

B.3 Proof of Theorem 4

B.3.1 Preliminaries

Proposition 14
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(i) In Case 1:

ΣC = Σ̂1 ≡

 σ ∈ Σ

∣∣∣∣∣∣∣∣∣
∀m ∈ S(σ(θ)),

m

 > θR if θ ∈ Θ22,

≤ θR if θ ∈ Θ21

 . (B.35)

(ii) In Case 2:

ΣC = Σ̂2 ≡
{
σ ∈ Σ

∣∣ ∀θ ∈ Θ22 and m ∈ S(σ(θ)), m > θR
}
. (B.36)

Proof. (i) (ΣC ⊆ Σ̂1) Suppose, in contrast, that there exists σ ∈ ΣC such that σ /∈ Σ̂1.

Case (a): there exist θ′ ∈ Θ22 and m′ ∈ S(σ(θ′)) such that m ≤ θR.

Consider the following strategy σ′ defined by:

σ′(θ) ≡

 θ′ if θ = θ′,

σ(θ) otherwise
(B.37)

Notice that there exists ϕ′ ∈ ΦC such that ϕ′(m′) = y1, and ϕ(θ′) = y2 holds for any ϕ ∈ ΦC .

However, it implies that V̄ (θ, ϕ(σ′(θ))) ≥ V̄ (θ, ϕ(σ(θ))) holds for any θ ∈ Θ and ϕ ∈ ΦC , and

the strict inequality holds for θ′ ∈ Θ and ϕ′ ∈ ΦC , which contradicts σ ∈ ΣC .

Case (b): there exist θ′′ ∈ Θ21 and m′′ ∈ S(σ(θ′′)) such that m′′ > θR.

Consider the following strategies σ′′ defined by:

σ′′(θ) =

 θR if θ = θ′′,

σ(θ) otherwise
(B.38)

Notice that there exists ϕ′′ ∈ ΦC such that ϕ′′(θR) = y1, and ϕ(m′′) = y2 holds for any

ϕ ∈ ΦC . However, it implies that V̄ (θ, ϕ(σ′′(θ))) ≥ V̄ (θ, ϕ(σ(θ))) holds for any θ ∈ Θ and

ϕ ∈ ΦC , and the strict inequality holds for θ′′ ∈ Θ and ϕ′′ ∈ ΦC , which contradicts σ ∈ Σ̂C .

(ΣC ⊇ Σ̂1) Suppose, in contrast, that there exists σ ∈ Σ̂1 such that σ /∈ ΣC . That is, there

exists σ′ ∈ Σ such that (i) V̄ (θ, ϕ(σ′(θ))) ≥ V̄ (θ, ϕ(σ(θ))) holds for any θ ∈ Θ and ϕ ∈ ΦC , and (ii)

V̄ (θ′, ϕ′(σ′(θ′))) > V̄ (θ′, ϕ′(σ(θ′))) holds for some θ′ ∈ Θ and ϕ′ ∈ ΦC . Because of Condition (ii),

θ′ /∈ Θ20. There are the following cases to be checked.

49



Case (a): θ′ ∈ Θ22.

Because σ ∈ Σ̂1, m
′ > θR holds for any m′ ∈ S(σ(θ)). However, it implies that ϕ(m′) = y2

holds for any ϕ ∈ ΦC and m′ ∈ S(σ(θ′)), which contradicts Condition (ii).

Case (b): θ′ ∈ Θ21 ∪Θ11 ∪Θ01.

Because σ ∈ Σ̂1 and σ′ ̸= σ, there exists message m′ ∈ S(σ(θ′)) such that m′ ≤ θR

and σ(m′|θ′) > σ′(m′|θ′). Notice that there exists ϕ′′ ∈ ΦC such that ϕ′′(m) = y2 for

any m ∈ S(σ′(θ′))\{m′}, and ϕ′′(m′) = y1. However, it implies that V̄ (θ′, ϕ′′(σ(θ′))) >

V̄ (θ′, ϕ′′(σ′(θ′))), which contradicts Condition (i).

Therefore, we can conclude that ΣC = Σ̂1.

(ii) By the similar argument used in (i), we can show that ΣC = Σ̂2. ■

B.3.2 Proof of Theorem 4

Hereafter, we focus on Case 1 because Case 2 can be shown using the similar argument adopted

here.32

(Existence) It is straightforward that the two-partition equilibrium with cutoff θS is a CUE.

Hence, it remains to show that it is the most informative equilibrium. Suppose, in contrast, that

there exists PBE (σ′, ϕ′;P ′) such that E[Ū(θ, ϕ′(σ′(θ)))] ≡ U ′ > US where US is the informativeness

of the two-partition equilibrium with cutoff θS . Notice that ϕ′(m) = y2 should hold for any

θ ∈ Θ22 and m ∈ S(σ′(θ)); otherwise, such a type deviates to send message m = θ, which induces

action y2 for certain. Define Θ′
21 ≡ { θ ∈ Θ21 | ∃m ∈ S(σ′(θ)) such that ϕ′(y2|m) > 0 }. Because

U ′ > US , P (Θ′
21) > 0 must hold. Furthermore, to hold this equilibrium, ϕ′(y2|m) > 0 must

hold for any m ≤ θR; otherwise, type θ ∈ Θ′
21 has an incentive to send a message m′ such

that ϕ(y2|m′) = 0. Define MS ≡ {m ∈ M | ∃θ ∈ Θ11 ∪Θ21 ∪Θ01 such that m ∈ S(σ′(θ)) }, and

assume that it is countable without loss of generality. Because of the properties of PBE (σ′, ϕ′;P ′)

mentioned above, for any m ∈ MS :

EP ′(m)[u(θ, y1)]Pr(m|Θ11 ∪Θ21) ≤ EP ′(m)[u(θ, y2)]Pr(m|Θ11 ∪Θ21). (B.39)

However, by summing up both sides of (B.39) for m ∈ MS , we obtain that E[u(θ, y1)|Θ11 ∪Θ21] ≤

E[u(θ, y2)|Θ11 ∪ Θ21], which contradicts Assumption 4-(ii). Therefore, we can conclude that the

two-partition equilibrium with cutoff θS attains the maximum informativeness.

32The details are available from the author upon request.
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(Uniqueness) Suppose, in contrast, that there exists CUE (σ′, ϕ′;P ′) such that E[Ū(θ, ϕ′(σ′(θ)))] ≡

U ′ ̸= U∗. By Proposition 14, any type in agreement region Θ22 is never pooling with types

in Θ11 ∪ Θ21 ∪ Θ0. Define Θ′ ≡ { θ ∈ Θ\Θ22 | ∃m ∈ S(σ′(θ)) such that ϕ′(y2|m) > 0 }. Because

U ′ ̸= U∗, P (Θ′) > 0 should hold. Now, suppose, in contrast, that Θ′ ⊆ Θ11 ∪ Θ01. By construc-

tion, almost every type in Θ11 ∩ Θ′ must be pooling with types in Θ21; otherwise, such a type

cannot induce action y2 with positive probability. However, it implies that Θ′
21 ≡ Θ21 ∩ Θ′ ̸= ∅,

which is a contradiction. Hence, Θ′
21 ̸= ∅, and then it is necessary for holding this equilibrium

that ϕ′(y2|m) > 0 for any m ≤ θR; otherwise, type θ ∈ Θ′
21 deviates to message m such that

ϕ′(y2|m) = 0. Then, by the same argument used in the existence part, we can derive a contradic-

tion. Therefore, we conclude that U∗ is the unique informativeness supported by CUEs. ■
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