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Abstract 

Earlier studies considered the effects of framing on individual decision making; 

however, the framing effects on herd behavior have not been studied. We conducted a 

neuroeconomic experiment to examine the strength of framing effects on herd mentality, 

the psychological basis of herd behavior in financial decisions. We focused on attribute 

framing and considered a case in which the identical financial problem was expressed 

differently by a gain or loss frame. Our experimental results implied that framing effects 

could not effectively weaken herd mentality to influence subjects to rely primarily on 

common information for decision making. We suggest that framing effects are 

sufficiently strong to change individual decision making; however, they are too weak to 

affect herd mentality. The strength of herd mentality overcomes framing effects. We 

used a powerful brain reading method of brain decoding to examine which of the two 

types of information, private or common, was used by the minds of the subjects. We 

discussed another interpretation of the experimental results to extend the understanding 

of attribute framing. 

  



 Introduction 

Background 

   Framing effects on individual decision making have been studied in behavioral 

economics since the publication of such seminal manuscripts as those of 

Kahneman-Tversky (1979), Kahneman-Slovic-Tversky (1982), and Tversky 

-Kahneman (1981, 1986). Agents are likely to change their decisions when affected by 

the use of different frames that are the expressive styles of decision problems.  

   There are at least three types of frames. Levin-Schneider-Gaeth (1998) claimed that 

“all frames are not created equal.” They classified frames into the following types that 

have different cognitive properties: risky-choice framing, attribute framing, and goal 

framing. Attribute framing is the simplest and most robust of the three. Levin-Gaeth 

(1988), Marteau (1989), and Krishnamurthya-Carterb-Blair (2001) provided typical 

examples for attribute framing that are observable in everyday life. The problem of 

attribute framing presents a case in which the same problem is expressed differently, for 

example, by a gain or a loss frame. If agents were perfectly rational, they would react 

identically to a problem regardless of it being expressed by different frames. Boundedly 

rational agents, however, show cognitive bias produced by the frames of their decision 

making. We focused on attribute framing and examined the relationship between 

framing and the psychological basis of financial decisions. 

   A limitation of earlier studies is that they have only considered framing effects on 

individual decision making. The nature of the relationship between framing effects and 

psychologically based herd behavior is unknown. We conducted a neuroeconomic 



experiment to examine the strength of framing effects on herd mentality in financial 

decisions. 

   According to the survey article by Hirshleifer-Teoh (2003), the study of herd 

behavior has a long history. Moreover, recent developments in the study of herd 

behavior have been remarkable.1 The recent studies use the methods of experimental 

economics and interpret their results using the rational assumptions of individual 

profit-maximization behavior. The use of the rational assumption provides clear 

interpretations and understanding of the experimental results; however, it restricts our 

research interest to a narrow field. The assumption allows us to consider only the 

perfectly rational agents who show neither an anomalous framing effect nor herd 

mentality in decision making. The use of the rational assumption might produce an 

underestimation of the actual possibility of herd behavior. To evade the underestimation, 

we should abandon the rational assumption and adopt the concept of boundedly rational 

agents to allow new interpretations of the experimental results. The study of framing 

effect on herd mentality provides a good example that allows us to consider bounded 

rational agents.  

The purpose of this study 

   The purpose of this study was to extend the scope of earlier studies of framing effect 

and herd behavior. Focusing on attribute framing, we presented a new experimental 

                                            
1 The theoretical studies on herd behavior are those by authors including Banerjee (1992), Bikhchandani 
et al. (1992), and Welch (1992). However, as Cipriani-Guarino (2005) correctly notes, it is difficult to test 
the theoretical results with empirical studies. Because of the lack of data on private information available 
to traders, it is difficult to determine whether traders would disregard their private information in favor of 
common information. The seminal studies by Cipriani-Guarino (2005, 2009) have overcome the research 
difficulty by conducting experimental studies. 



study to examine the strength of framing effect on herd mentality, the psychological 

basis of herd behavior. To accomplish the goal of this study, we used a powerful brain 

decoding method to examine which of the two types of information, private or common, 

was used by the minds of the subjects. When herd mentality was strong, that mentality 

would influence subjects to rely primarily on common information for decision making. 

The method of brain decoding was executed by the following three steps: (1) we 

conducted preliminary games that produced neural data to be used in learning and 

training the neural network architecture to accurately recognize the typical pattern of 

neural activity when subjects used private or common information for decision making, 

(2) we examined the credibility of the neural network architecture to recognize the 

typical neural pattern by using an additional check program, and (3) we executed a core 

game to obtain the neural data that were compared with the typical patterns by a pattern 

recognition method using the checked neural network architecture. In the core game, the 

subjects could freely choose whether they would use private or common information for 

decision making. The rate of matching for the neural pattern taught us which 

information was used for free decision making.  

Four cases (2 x 2 cases) with two-dimensional framing effects 

   We analyzed the complex cases in which private and common information are 

simultaneously expressed by different types of frames. This situation reflects “a 

two-dimensional problem of framing effects.” Table 1 illustrates four cases (2 x 2 cases) 

with two-dimensional framing effects. Cases 1 and 4 are expressed only by a single 

frame, whereas Cases 2 and 3 are expressed by mixed frames. Earlier behavioral 



economics studies analyzed single-framed cases and did not consider cases with mixed 

frames. We considered the mixed frames and examined the results that were produced 

in Cases 2 and 3. In the later section, we demonstrate that focusing on Cases 2 and 3 

would be more productive for obtaining significant insights than studying other cases. 

Material and Methods 

Subjects and Tools for Brain Decoding 

   Eighteen healthy right-handed subjects (nine males; nine females) aged 20-24 years 

played the experimental games. All subjects were students at Aoyama Gakuin 

University. While each subject played the games, we obtained the necessary brain 

decoding data. The subjects were not allowed to eat for two hours before the experiment 

to ensure clear neural reactions to the experimental tasks. Before beginning the 

experiment, the experimental procedures, safety, security information, and procedure 

for obtaining payment for participation were explained to the subjects, and informed 

consent was obtained from each participant. Our experimental plans and procedures 

were approved by the Research Ethics Committee of Aoyama Gakuin University, 

Tokyo, Japan. 

   As illustrated in Figure 1, we used functional near-infrared spectroscopy (fNIRS), a 

simpler and more convenient tool for examining brain activation than the more widely 

used functional magnetic resonance imaging (fMRI). The use of fNIRS results in 

minimal stress to the subjects. For fNIRS, we used the Spectratech OEG-SpO2 model 

(updated from the OEG-16 model, with a sampling rate of 6.10 Hz, manufactured by 

Spectratech, Inc., Tokyo and Yokohama, Japan), which is based on the modified 



Beer-Lambert law, to scan the frontal cortex of the brain. This fNIRS equipment uses 

small, lightweight, 16-channel digital sensors on a headband to obtain event data 

through a dynamic, high-sensitivity optical signal that reflects how in vivo hemoglobin 

combines with oxygen in blood vessels with high or low cortical activation. fNIRS 

provides three types of event-related neural data: changes in oxyhemoglobin 

(ΔCoxyHb), changes in de-oxyhemoglobin (ΔCdeoxyHb), and aggregate changes in the 

two types of hemoglobin (ΔCoxyHb + ΔCdeoxyHb). We used the changes in 

oxyhemoglobin for brain decoding. Strangman et al. (2002) found a strong correlation 

between fMRI variables and fNIRS measures, with oxyhemoglobin data providing the 

strongest correlation. Therefore, using oxyhemoglobin data will produce results for 

fNIRS brain decoding that correspond to those of fMRI studies. We claim that this 

method enables us to perform efficient and low-stress brain decoding experiments.   

   The 16-channel digital sensors were fixed on the frontal cortex by the headband 

during the experiment. After each subject completed the experiment, the location of 

each sensor was measured using 3-D positioning with FN-1000 software (manufactured 

by Topcon Corporation, Tokyo, Japan) and a digital camera (Nikon D5100) calibrated 

using FN-Calib software (manufactured by Topcon) to confirm that the channels were 

properly located on the frontal cortex of the brain. Figure 2 illustrates the locations of 

the sensors for the first subject mapped onto a canonical brain using NIRS-SPM 

software, which is a MATLAB-based software for performing statistical analysis of 

brain imaging data from fNIRS signals (developed at the Bio Imaging Signal Processing 



Lab in Korea). We obtained event-related, high-sensitivity optical signals from these 

channels. 

Experimental Tasks 

   We examined the framing effect on herd behavior in Cases 2 and 3, which were 

complex cases in which private and common information were expressed differently by 

the gain frame and the loss frame.  

   The basic structure of the experimental task in Case 2 was identical to that in Case 3. 

Figure 3 illustrates that the tasks were composed of three parts, Games A, B, and C. 

There was a 10-minute rest between Games B and C for refreshment and for 

mood-changing conversation with friends to prepare for Game C. We presented the 

subjects with the tasks to be executed via a computer monitor and obtained neural data 

while the subjects were executing the tasks. 

   As already explained, the method of brain decoding was executed in three steps. In 

the first step, we executed Games A and B, which produced neural data for learning and 

training the neural network architecture to accurately recognize the typical pattern of 

neural activity in Games A and B. Figure 4 illustrates the concept of learning the neural 

network architecture. Using the “nntraintool” in the Neural Network Tool Box, we 

defined a hidden layer 10 and an output layer 2. The input was the neural data obtained 

in Games A and B. The output was the vector (1,0) when the input was the data from 

Game A and the vector (0,1) when the input was the data from Game B. The neural 

network architecture was determined by training with the input data to recognize the 



typical patterns of neural activity for either vector (1,0) or (0,1). This approach is a 

so-called “supervised learning method.” 

   In Game A, the subjects were asked to consider the problem of whether to buy 

financial stock after viewing private information via a computer monitor. As Table 1 

illustrates, the private information was expressed by the gain frame in Case 2 and by the 

loss frame in Case 3. We expected the subjects to make their decisions in light of the 

private information. Common information was not displayed on the computer monitor. 

We expected that the subjects in Game B would consider the identical problem in light 

of common information. The common information was expressed by the loss frame in 

Case 2 and by the gain frame in Case 3.  

   In the second step, using an additional check program, we examined the credibility 

of the neural network architecture to recognize the typical neural patterns within fNIRS 

data. The check program was executed to examine whether new activity data randomly 

sampled from Games A and B would be properly classified again into the original data 

groups of Games A and B using the trained neural network architecture. After we 

checked the credibility of the neural network architecture, we progressed to the next 

stage.   

   In the third step, we executed Game C, the core game from which we obtained the 

neural data to be compared with the typical patterns of Games A and B using a pattern 

recognition method. In the game, the subjects could freely consider the stock problem 

after viewing both the private and common information that were expressed by either 

the gain frame or the loss frame. We expected the subjects to freely choose whether 



they would ignore the private information and accept only the common information. 

The data obtained in Games C were compared with the two typical neural patterns 

previously identified in Games A and B to obtain a rate of matching. If the rate of 

matching for the neural pattern of Game B was larger than that of Game A, the subject 

mainly used common information for financial decision making in the stock market. 

   Figure 5 illustrates the monitor screens presented in the short tasks of Games A, B, 

and C in Cases 2 and 3. First, we explain the short task in Case 2. Before playing the 

game, we explained to the subjects that there was a financial stock that provided a 

chance for either gaining or losing $10 and asked the subjects to decide whether to buy 

the stock. Then, the game began. The first screen of the computer monitor displayed a 

white cross on a black ground to indicate that the subjects should begin the game in a 

state of relaxation. After 10 seconds, Game A began. Game A presented the subjects 

with private information for 7 seconds to allow them to consider the stock problem. The 

private information was expressed by the gain frame, and the message on the monitor 

was “ This is your private information. If you buy the stock, you will get $10 with a 

60% probability. Do you buy the stock?”2 Neural data were obtained by fNIRS during 

this consideration period. Figure 5 illustrates with gray areas the period for obtaining 

neural data. After the presentation, the subjects were asked to press the “Y” key for yes 

or the “N” key for no within 3 seconds. To evade emotional upset, the results of their 

                                            
2 To make our experiment effective, we presented an incentive plan to the subjects. The subjects were 
informed about the possibility that their paycheck from participating in the experiment would be changed 
with the results of their decisions in the games. After each subject finished all of the games, we randomly 
selected two results from all results to be realized and determined his/her final paycheck. This changeable 
bonus paycheck was added to (or deducted from) the basic paycheck already determined in the contract. 
The luckiest bonus was $20, and the unluckiest bonus was -$20. 



decisions were revealed after they had finished all of the games. Game A was repeated 

3 times.  

   Game B presented the subjects with common information for 7 seconds, allowing 

them to consider the problem. The common information was expressed by the loss 

frame, and the message on the monitor was “ This is the common information to be 

known by everyone. If you buy the financial stock, you will lose $10 with a 40% 

probability. Do you buy the stock?” After the presentation, the subjects were asked to 

press “Y” or “N” within 3 seconds. Game B was repeated 3 times. 

   Game C simultaneously presented the subjects with private and common 

information on the same screen for 7 seconds. The private information was expressed 

by the gain frame, and the common information was expressed by the loss frame. The 

subject could freely select either the private information or the common information in 

considering the problem. Neural data were obtained during the consideration period. 

After the simultaneous presentation of the two types of information, the subjects were 

asked to press “Y” or “N” within 3 seconds. Game C was repeated 3 times. 

   Next, we explain the short task in Case 3. The structure of the short task in Case 3 

was basically the same as that in Case 2. Case 3 was only different from Case 2 in the 

frames that expressed the private and common information. The private information 

was expressed by the loss frame in Case 3 and by the gain frame in Case 2. The 

common information was expressed by the gain frame in Case 3 and by the loss frame 

in Case 2. 

Random Selection of Neural Data for Brain Decoding 



   For the brain decoding, as Figure 6 illustrates, we randomly selected samples of 

neural data points in three steps. First, we randomly selected a sample of 40 neural data 

points per subject from Games A and B in Cases 2 and 3 to determine the neural 

network architecture and to establish the typical neural patterns. Second, we randomly 

selected a sample of 20 neural data points per subject from Games A and B in Cases 2 

and 3 to examine the credibility of the determined neural network architecture. Finally, 

we randomly selected a sample of 10 data points per subject from Game C in Cases 2 

and 3. Each of the 10 data points was matched by pattern recognition with the two 

typical neural patterns to obtain the rates of matching. If the rate of matching with 

Game B was larger than the rate of matching with Game A, the subject mainly used the 

common information for financial decision making. The random selection was 

conducted for all 18 subjects. Data were collected for 180 cases of brain decoding with 

pattern recognition. 

Results 

   We obtained the following results from the three steps of experiments. In the first 

step, we obtained neural activity data from 18 subjects in Games A and B in Cases 2 

and 3. Figure 7a illustrates the neural activity data from the first subject obtained from 

16 channels in Case 2. Baseline drifts in the neural data were removed. Trigger signals 

showed the starting points of 7- second short tasks and 3-second pauses between the 

tasks of pressing “Y” or “N”. First, Game A was repeated three times, and then Game B 

was repeated three times. In Figure 7a, red and blue graphs illustrate the changes in 

oxyhemoglobin (ΔCoxyHb) and de-oxyhemoglobin (ΔCdeoxyHb). We used the 



changes in oxyhemoglobin for brain decoding after noise cancelling by the following 

procedure: Figure 7b shows the result of frequency analysis of the neural activity data. 

We eliminated spike noises in the red graph (77-94 pulse/min in Figure 7b) that were 

produced by pulse-waves. The elimination of spike noises improved the effectiveness of 

the event-related neural activity data in learning and training the neural network 

architecture to accurately recognize the typical pattern of neural activity in Games A 

and B.  

   We randomly selected a sample of 40 neural data points per subject from the 

changes in oxyhemoglobin in Games A and B of Cases 2 and 3 for brain decoding after 

eliminating spike noises. We trained the neural network architecture to recognize each 

subject’s typical neural patterns in Games A and B, using the algorithms and the 

progress stop conditions of the Neural Network Tool Box listed in Table 2a. Table 2b 

lists the seed numbers that were used to generate a random number sequence for the 

neural network weights initialization and to partition the initial data into a training set 

for learning and a validation set. The seed numbers were determined to maximize the 

performance in determining the neural network architecture. The numbers enable the 

reproduction of our analytical results when the same numbers are used with the same 

experimental data. 

   In the second step, we examined the credibility of the neural network architecture to 

recognize the typical neural patterns. The check program was executed in each 

experiment of Cases 2 and 3 for all subjects to examine whether new activity data points 

randomly sampled from Games A and B would be properly classified into the original 



data groups of Games A and B using the trained neural network architecture. Figure 8 

shows the result for the first subject of the experiment in Case 2. As Figure 4 shows, the 

output should be the vector (1,0) when the input was the data from Game A and the 

vector (0,1) when the input was the data from Game B. Figure 8 shows that new activity 

data randomly sampled from Games A and B were properly classified into the two data 

groups within the neighborhoods of the vectors (1,0) and (0,1). We executed a t-test to 

confirm the statistical significance of the difference between the averages in the two 

classified data groups (p < 0.001). We also examined the results from all 18 subjects in 

the experiment in Cases 2 and 3 using t-tests to confirm statistical significance (p < 

0.001). The credibility of the trained neural network architecture was established.   

   In the third step, we executed Game C, the core game in which the subjects freely 

chose whether they would ignore the private information and accept only the common 

information. For each subject, 10 randomly selected neural data points from Game C 

were matched with the two typical neural patterns previously identified by the checked 

neural network in Games A and B to obtain a rate of matching. Figures 9a and 9b 

illustrate the rates of matching in Cases 2 and 3, respectively. The horizontal axis of the 

diagrams measures the rate of matching with the typical neural pattern of Game A, 

which corresponds to the probability of utilizing the private information for the 

financial decision making. The vertical axis measures the rate of matching with Game B, 

which implies the probability of utilizing the common information. Figures 9a and 9b 

were not identical: however, the average matching rates with Games A and B in the two 

scatter diagrams were quite similar. In Figure 9a, the average matching rate with the 



typical pattern of Game A was 0.184928 and that of Game B was 0.827050. In Figure 

9b, the average matching rate of Game A was 0.142892 and that of Game B was 

0.839575. Figure 10 illustrates a small difference between the average matching rates of 

Figures 9a and 9b. We executed a t-test to examine the statistical significance of the 

difference between Points X (0.184928, 0.827050) and Y (0.142892, 0.839575) in 

Figure 10. The p values of the differences in the average matching rates between 

0.184928 and 0.142892 and between 0.827050 and 0.839575 were, respectively, p = 

0.245106 and p = 0.727220, and they were not statistically significant (p > 0.05). The 

difference between Points X and Y was too small to be statistically significant. 

   The average matching rates with the typical pattern of Game B (i.e., 0.827050 and 

0.839575) continued to be higher than the average matching rates with that of Game A 

(i.e., 0.184928 and 0.142892) in Cases 2 and 3, illustrated by Figures 9a and 9b. The 

continuously higher values of the matching rates with Game B imply that the subjects 

continued to rely more strongly on common information than private information for 

their decision making. The strong reliance on common information was herd mentality 

inducing the agents to be likely to choose the same action as the others. The framing 

effect produced by the use of different gain and loss frames did not effectively weaken 

herd mentality in financial decision making. 

Discussion 

Implications of the Results 

   We built a bridge from the study of framing effects to the study of herd behavior, 

which until now have been developed separately. Framing effects have been described 



in the seminal manuscripts of Kahneman-Tversky (1979), Kahneman-Slovic-Tversky 

(1982), and Tversky-Kahneman (1981, 1986). The earlier studies, however, only 

considered framing effects on individual decision making. The nature of the relationship 

between framing effects and psychologically based herd behavior is unknown. 

According to the survey article by Hirshleifer-Teoh (2003), the study of herd behavior 

also has a long history. Recent developments in studies of herd behavior have been 

remarkable. The recent studies use the methods of experimental economics and interpret 

their results by using the rational assumptions of individual profit-maximization 

behavior. To further develop the study of herd behavior, we should explicitly adopt the 

concept of boundedly rational agents to provide us new interpretations of the 

experimental results. Our study of the relationship between framing effects and herd 

mentality provides a good example for considering boundedly rational agents who are 

likely to change their decision making as a result of spontaneous and irrational 

motivation. The bridge from the study of framing effect to the study of herd behavior is 

useful to researchers studying either of the two subjects.  

   Our experimental results have new implications for the strength of framing effects. 

Focusing on attribute framing, a simple and robust frame, we considered a case in 

which the identical financial problem was expressed differently by a gain or loss frame. 

Levin-Gaeth (1988), Marteau (1989), Levin-Schneider-Gaeth (1998), and 

Krishnamurthya-Carterb-Blair (2001) showed that agents are likely to change their 

individual decision making when affected by attribute framing in everyday life. 

Framing effects are sufficiently strong to change individual decision making. Our 



results, however, suggested that framing effects are too week to affect herd mentality. 

The results strongly suggested the existence of a new restriction on effective cases in 

which framing effects change agents’ decision making.   

   We can interpret the experimental results in another way. Judging the value of 

information for decision making, the subjects heuristically and strongly relied on the 

labels of “individually obtained” or “commonly obtained” that defined the attributes of 

information. The strong adherence to the difference between individual information and 

common information can be interpreted to produce another type of attribute framing 

that affects decision making. The new type of attribute framing was strong enough to 

exclude the attribute framing effect previously discussed, which was produced from the 

different expressive styles in a gain or loss frame of the identical decision problem. 

There was a “lexicographic order” between the cases in which different types of 

attribute framing have actual effects on decision making. In the interpretation of another 

type of attribute framing, we should withdraw our previous suggestion that framing 

effects were restricted. Our experimental results can be newly understood to show that 

attribute framing was generally observed and that different types of attribute framing 

had actual effects on decision making depending upon the existence or absence of herd 

mentality. 

Rationale for Focusing on Cases 2 and 3 

   We focus on Cases 2 and 3 with mixed frames, ignoring Cases 1 and 4 with a single 

frame. In this section, we consider the reason for focusing on Cases 2 and 3. The 



problem is whether our focusing on Cases 2 and 3 can be justified when we examine the 

magnitude of framing effects on herd mentality.  

   We consider the following alternative cases, (A) and (B), in which framing effects 

theoretically change the use of private and common information for decision making. 

(A) We consider the case in which agents prefer a gain frame to a loss frame. Agents 

increase the use of information with a gain frame and decrease the use of information 

with a loss frame. In Case 3, common information is expressed by a gain frame, and 

private information is expressed by a loss frame. The possibility of using common 

information is maximized in Case 3. Conversely, in Case 2, common information is 

expressed by a loss frame, and private information is expressed by a gain frame. The 

possibility of using common information is minimized in Case 2. The change of the 

possibility of using common information implies the change in the strength of the herd 

mentality, that is, a framing effect produced by the preference for a gain frame over a 

loss frame. To examine whether the framing effect on herd mentality is strong or weak, 

we should compare the maximized and minimized possibilities of using common 

information in Cases 2 and 3. If the difference between the maximized and minimized 

possibilities of using common information is too small to be statistically significant, we 

conclude that framing effects cannot affect herd mentality in financial decision making. 

Conversely, if the difference is sufficiently large, we conclude that framing effects 

markedly affect herd mentality.  

(B) We consider the other case in which agents pay more attention to a loss frame than a 

gain frame when making a decision. This case is dealt with in the same manner as 



discussed above. The possibility of using common information is maximized in Case 2 

and minimized in Case 3. To examine whether the framing effect on herd mentality is 

strong or weak, we should compare the maximized and minimized possibilities of using 

common information in Cases 2 and 3. 

   The above discussions of (A) and (B) justify that we focus on Cases 2 and 3 with 

mixed frames and ignore Cases 1 and 4 with a single frame. We can obtain sufficient 

results by analyzing Cases 2 and 3 to examine the strength of framing effects on herd 

mentality for financial decision making.  

Concluding Remarks 

   Previous studies have considered the framing effect on individual decision making; 

however, the effect of frames on herd mentality and herd behavior has not been studied. 

We conducted a neuroeconomic experiment to address the new unsolved problem. We 

focused on the concept of attribute framing, a simple and strong framing, to consider the 

case in which the same financial problem was expressed by a gain or a loss frame. Our 

problem was to examine whether attribute framing would have substantial effects on 

herd mentality, as well as on individual decision making. Our results implied that the 

framing effect did not affect the herd mentality to primarily rely on common 

information, inducing agents to be likely to choose the same action as others. We claim 

that the framing effect is sufficiently strong to change individual decision making; 

however, it is too weak to affect herd mentality. 

   The above conclusion strongly suggested that framing effect exerted a significant 

effect only in a restrictive case of individual decision making. There is, however, 



another interpretation of the experimental results. We already discussed that 

psychologically based herd behavior could be interpreted as being produced by another 

type of attribute framing that was labeled by information sources as “commonly 

obtained” or “individually obtained” to affect decision making. In the alternative 

interpretation of the results, we should withdraw our previous suggestion that framing 

effects were restricted by herd mentality. We can understand that framing effects were 

generally observed not only in individual decision making but also in psychologically 

based herd behavior that was associated with heuristic and boundedly rational 

adherence to common information for decision making. 

  The experimental results allow us the alternative interpretations. However, both of 

the interpretations are based on the same fact that adherence to common information has 

strong effects on decision making. The adherence to common information may be 

produced by biases in social mind to value the social relationship among agents above 

everything else. Sherman-Gawronski-Trope (2014) show that dual-process theories are 

useful to investigate the reason why social mind dominates private mind. Our 

experimental results will be more deeply explained by dual-process theories in future 

researches.  

   In this experiment, we executed a brain reading method using a neural network 

architecture that used a pattern recognition method to match the neural activity data in 

the core game C with the typical neural activity data in the preliminary games A and B. 

In the pattern recognition method, we examined the difference between the neural 

activity data not only by comparing the most activated brain regions but also by 



comparing the relationship among multiple brain regions with correlated activations. 

The pattern recognition is a more effective method to investigate the function of the 

brain than earlier methods that tried to specify only the most activated brain region 

during the execution of experiments. Brain reading using the pattern recognition method 

is useful for carefully examining similarities or differences between neural activity data 

to broaden the research horizon of neuroeconomic studies.
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Table1 Four Cases with Private and Common Information Expressed by a Gain or Loss  

Frame 

 

   There are four cases (2 x 2 cases) with two-dimensional framing effects. Cases 1 

and 4 are expressed only by a single frame, whereas Cases 2 and 3 are expressed by 

mixed frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Algorithms 

    Data division function: random data division function 

    Training function: scaled conjugate gradient training function 

    Performance function: mean squared error performance function 

    Derivative function: default derivative function 

  

The Progress Stop Conditions for Learning 

    Epoch: 1000 

    Performance: 0.00 

    Gradient: 1.00 e-10 

    Validation Checks: 6  

 

Table 2a The Algorithms and the Progress Stop Conditions for Determining the Neural 

Network Architecture Using the Neural Network Tool Box (nntraintool) 

 

   We trained the neural network architecture to recognize each subject’s typical neural 

patterns in Games A and B, using the algorithms and the progress stop conditions of the 

Neural Network Tool Box listed in Table 2a. 



(Case 2) 

subject   1   2   3   4   5   6   7   8   9 

seed    10  -4   8  -11   1   9   0   1  -9 

 

subject  10  11  12  13  14  15  16  17  18 

seed  15   11   9   14  -10  11  -1   9  -12 

 
(Case 3) 

subject   1   2   3   4   5   6   7   8   9 

seed    15  16  -14   -5  -11  -14  -14  12   5 

 

subject  10  11  12  13  14  15  16  17  18 

seed  16   -8  -13   9   0   2   15  -12  -6 

 
Table 2b The Seed Numbers Used to Generate a Random Number Sequence for Each 

Subject in Cases 2 and 3  

 
   The seed numbers were used to generate a random number sequence for the neural 

network weights initialization and to partition the initial data into a training set for 

learning and a validation set. The seed numbers were determined to maximize the 

performance in determining the neural network architecture. The numbers enable the 

reproduction of our analytical results when the same numbers are used with the same 

experimental data. 

 



  
 
Figure 1 fNIRS Multi-channel Digital Sensors on a Headband 
 
   For fNIRS, we used the Spectratech OEG-SpO2 model (updated from the OEG-16 

model, with a sampling rate of 6.10Hz, manufactured by Spectratech, Inc., Tokyo and 

Yokohama, Japan), which is based on the modified Beer-Lambert law, to scan the 

frontal cortex of the brain. This fNIRS equipment uses small, lightweight, 16-channel 

digital sensors on a headband.  
  



      

 
Figure 2 The Locations of the 16 fNIRS Channels for the First Subject, Mapped onto a 

Canonical Brain 

 
   The 16-channel digital sensors were fixed on the frontal cortex by the headband 

during the experiment. After each subject completed the experiment, the location of 

each sensor was measured using 3-D positioning with FN-1000 software (manufactured 

by Topcon Corporation, Tokyo, Japan) and a digital camera (Nikon D5100) calibrated 

using FN-Calib software (manufactured by Topcon) to confirm that the channels were 

properly located on the frontal cortex of the brain. Figure 2 illustrates the locations of 

the sensors for the first subject mapped onto a canonical brain using NIRS-SPM 

software, which is a MATLAB-based software for performing statistical analysis of 

brain imaging data from fNIRS signals (developed at the Bio Imaging Signal Processing 

Lab in Korea). We obtained event-related, high-sensitivity optical signals from these 

channels. 

 
  



 

             Game A     Game B      Game C  

           

                                Rest       

                              (10 minutes)    

 
Figure 3 The Experimental Tasks were Composed of Three Games, A, B, and C  

 

   Games A and B were preliminary games that produced neural data for learning and 

training the neural network architecture to accurately recognize the typical pattern of 

neural activity in Games A and B. Game C was the core game from which we obtained 

the neural data to be compared with the typical patterns of Games A and B using a 

pattern recognition method. In the game, the subjects could freely consider the stock 

problem after viewing both the private and common information that were expressed by 

either the gain frame or the loss frame. There was a10-minute rest between Games B 

and C for refreshment and for mood-changing conversation with friends to prepare for 

Game C.  
  



 
  Input     Neural Network Architecture    Output 

 
 Neural data        Hidden Layer (10)   (1,0) when input is the data from Game A  

 obtained in        Output Layer (2)     (0,1) when input is the data from Game B  

 Games A and B 

 

Figure 4 The Concept of Learning and Training the Neural Network Architecture Using 

the Neural Activity Data Obtained in Games A and B 

 

   Figure 4 illustrates the concept of learning the neural network architecture. Using 

the “nntraintool” in the Neural Network Tool Box, we defined a hidden layer 10 and an 

output layer 2. The input was the neural data obtained in Games A and B. The output 

was the vector (1,0) when the input was the data from Game A and the vector (0,1) 

when the input was the data from Game B. The neural network architecture was 

determined by training with the input data to recognize the typical patterns of neural 

activity for either vector (1,0) or (0,1). This approach is a so-called “supervised learning 

method.” 

 

  



           Case 2           Case 3 

  Start  

(10 seconds)                     

 

 Game A  

(7+3 seconds, 

repeated 3 

times)   

 

  

 

    Press “Y” or “N”. (3 seconds)    Press “Y” or “N”. (3 seconds) 

 

 Game B 

(7+3 seconds, 

repeated 3 

times) 
   

 

   

 

    Press “Y” or “N”. (3 seconds)    Press “Y” or “N”. (3 seconds) 

 

 

Game C 

(7+3 seconds, 

repeated 3 

times) 

  

 

  

 

   

 

   

 

    Press “Y” or “N”. (3 seconds)    Press “Y” or “N”. (3 seconds) 

Figure 5 The Monitor Screens Presented in Short Tasks of Games A, B, and C in Cases 2 and 3 

If you buy
the stock,
you will 
get $10
with a 60%
probability.

This is your private information.
Do you buy the stock? (7 seconds)

If you buy 
the stock, 
you will
lose $10 
with a 40% 
probability.

This is your private information.
Do you buy the stock? (7 seconds)

If you buy 
the stock, 
you will
lose $10 
with a 40% 
probability.

This is the common information to be known
 by everyone. Do you buy the stock? (7 seconds)

If you buy
the stock,
you will 
get $10
with a 60%
probability.

This is the common information to be known
 by everyone. Do you buy the stock? (7 seconds)

If you buy
the stock,
you will 
get $10
with a 60%
probability.

This is your private information.
Do you buy the stock? (7 seconds)

If you buy 
the stock, 
you will
lose $10 
with a 40% 
probability.

This is the common information to be known
 by everyone. Do you buy the stock? (7 seconds)

If you buy 
the stock, 
you will
lose $10 
with a 40% 
probability.

This is your private information.
Do you buy the stock? (7 seconds)

If you buy
the stock,
you will 
get $10
with a 60%
probability.

This is the common information to be known
 by everyone. Do you buy the stock? (7 seconds)



         

Figure 6 Random Selection of Neural Data Points for Brain Decoding in Three Steps  

 

   For the brain decoding, we randomly selected samples of neural data points in three 

steps. First, we randomly selected a sample of 40 neural data points per subject from 

Games A and B in Cases 2 and 3 to determine the neural network architecture and to 

establish the typical neural patterns. Second, we randomly selected a sample of 20 

neural data points per subject from Games A and B in Cases 2 and 3 to examine the 

credibility of the determined neural network architecture. Finally, we randomly selected 

a sample of 10 data points per subject from Game C in Cases 2 and 3. Each of the 10 

data points was matched by pattern recognition with the two typical neural patterns to 

obtain the rates of matching.  



 

 
Figure 7a The Neural Activity Data from the First Subject Obtained from 16 Channels 
in Case 2.  

 
  Red and blue graphs illustrate the changes in oxyhemoglobin (ΔCoxyHb) and 

de-oxyhemoglobin (ΔCdeoxyHb). We used the changes in oxyhemoglobin for brain 

decoding after eliminating spike noises produced by pulse-waves. 
 
 

 
Figure 7b The Result of Frequency Analysis of the Neural Activity Data from the First 
Subject in Case 2 

 

 Figure 7b was the result of frequency analysis of the neural activity data. We 

eliminated spike noises in the red graph (77-94 pulse/min in Figure 7b) that were 

produced by pulse-waves. The elimination of spike noises improved the effectiveness of 

the event related neural activity data in learning and training the neural network 

architecture to accurately recognize the typical pattern of neural activity in Games A 

and B.  

 
  



 
Figure 8 The Results of the Check Program to Examine the Credibility of the Neural 

Network Architecture for the First Subject of the Experiment in Case 2 

 

  Figure 8 illustrates the results of the check program executed for the first subject of 

the experiment in Case 2 to examine the credibility of the neural network architecture to 

recognize the typical neural patterns of Games A and B. Figure 8 shows that new 

activity data points randomly sampled from Games A and B were properly classified 

into the two data groups within the neighborhoods of the vectors (1,0) and (0,1). The 

credibility of the trained neural network architecture was established.  



  

    

 Figure 9a The Rates of Matching Illustrated in the Scatter Diagram Obtained by Brain 

Decoding of Neural Data of 18 Subjects in Case 2 

 

  For each subject, 10 randomly selected neural data points from Game C were 

matched with the two typical neural patterns previously identified by the checked neural 

network in Games A and B to obtain a rate of matching. The horizontal axis of the 

diagram measures the rate of matching with the typical neural pattern of Game A, which 

corresponds to the probability of utilizing the private information for the financial 

decision making. The vertical axis measures the rate of matching with Game B, which 

implies the probability of utilizing the common information. 
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Figure 9b The Rates of Matching Illustrated in the Scatter Diagram Obtained by Brain 

Decoding of Neural Data of 18 Subjects in Case 3 
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the matching rate with the typical pattern of Game A	
 



 

  the average matching rate with the typical  

   neural pattern of Game B 

        
                                  the average matching rate with the typical        

                                  neural pattern of Game A 
X: a point representing the average matching rate in Case 2 where private information 

was expressed by a gain frame and common information was expressed by a loss frame 

Y: a point representing the average matching rate in Case 3 where private information 

was expressed by a loss frame and common information was expressed by a gain frame 

 

Figure 10 A Small Difference Between the Average Matching Rates in Cases 2 and 3 

 

   Figure 10 illustrates a small difference between the average matching rates in Cases 

2 and 3. The difference between Points X and Y was too small to be statistically 

significant. The average matching rates with the typical pattern of Game B continued to 

be higher than the average matching rates with that of Game A The framing effect 

produced by the use of different gain and loss frames did not effectively weaken herd 

mentality in financial decision making. 

 

 


